Chemistry of Natural Compounds

, Volume 55, Issue 4, pp 622–625 | Cite as

Synthesis of Monosubstituted Purpurins and Their Biological Activity

  • T. V. KharlamovaEmail author
  • R. B. Seidakhmetova
  • K. D. Praliev

Products were obtained from acylation of 1,2,4-trihydroxy-9,10-anthraquinone (purpurin) by saturated cyclic carboxylic acid chlorides. The compositions and structures of the monosubstituted compounds were confirmed by elemental analysis and IR and PMR spectroscopy. The cytotoxicities of the derivatives were evaluated in an Artemia salina Leach brine shrimp test.


purpurin saturated cyclic carboxylic acid chlorides Artemia salina Leach brine shrimp cytotoxicity 



The work was financially supported by the Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, under contract No. 83 (Appendix 1.7) dated March 2, 2018, in the framework of the project on “Search for new drugs based on available synthetic analogs of natural anthraquinone derivatives” (IRN AR05131788).


  1. 1.
    R. H. Thomson, Naturally Occurring Quinones III, Chapman and Hall, New York, 1987, pp. 345–526.Google Scholar
  2. 2.
    W. Nam, S. P. Kim, S. H. Nam, and M. Friedman, Molecules, 22, 265 (2017).CrossRefPubMedCentralGoogle Scholar
  3. 3.
    N. S. Degirmenci, L. Alpsoy, and A. Aktumsek, Hum. Exp. Toxicol., 35, 544 (2016).CrossRefPubMedGoogle Scholar
  4. 4.
    H. W. Lee, H. W. Ryu, M.-G. Kang, D. Park, S.-R. Oh, and H. Kim, Bioorg. Med. Chem. Lett., 27, 1136 (2017).Google Scholar
  5. 5.
    M. V. Gorelik, Chemistry of Anthraquinone and Its Derivatives [in Russian], Khimiya, Moscow, 1983, 295 pp.Google Scholar
  6. 6.
    V. Ya. Fain, 9,10-Anthraquinones and Their Application [in Russian], Tsentr Fotokhimii RAN, Moscow, 1999, 92 pp.Google Scholar
  7. 7.
    G. L. Vyshkovskii (ed.), Drug Encyclopedia 2017 [in Russian], Vedanta, Moscow, 2016, 1288 pp.Google Scholar
  8. 8.
    T. V. Kharlamova, Chem. Nat. Compd., 43, 391 (2007).CrossRefGoogle Scholar
  9. 9.
    T.V. Kharlamova, Chem. Nat. Compd., 45, 500 (2009).CrossRefGoogle Scholar
  10. 10.
    T. V. Kharlamova, Chem. Nat. Compd., 45, 629 (2009).CrossRefGoogle Scholar
  11. 11.
    R. Singh, Geetanjali, and C. S. M. S. Chauhan, Chem. Biodiversity, 1, 1241 (2004).CrossRefGoogle Scholar
  12. 12.
    B. N. Meyer, R. N. Ferrigini, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin, Planta Med., 45, 31 (1982).CrossRefPubMedGoogle Scholar
  13. 13.
    J. L. McLaughlin, C. J. Chang, and D. L. Smith, in: Studies in Natural Product Chemistry, A. Rahman (ed.), Elsevier, Amsterdam, 1991, Vol. 9, pp. 383–409.Google Scholar
  14. 14.
    B. S. Nunes, F. D. Carvalho, L. M. Guilhermino, and G. Stappen, Environ. Pollut., 144, 453 (2006).CrossRefPubMedGoogle Scholar
  15. 15.
    Y. M. Karchesy, R. G. Kelsey, G. Constantine, and J. J. Karchesy, SpringerPlus, 5, 510 (2016).Google Scholar
  16. 16.
    M. Biradi and K. Hullatti, Drug Dev. Ther., 5, 139 (2014).CrossRefGoogle Scholar
  17. 17.
    J. M. Nguta and J. M. Mbaria, J. Ethnopharmacol., 148, 988 (2013).CrossRefPubMedGoogle Scholar
  18. 18.
    S. A. Gadir, J. Chem. Pharm. Res., 4, 4148 (2012).Google Scholar
  19. 19.
    D. J. Finney, Probit Analysis, Cambridge University Press, Cambridge, 1971, 350 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. V. Kharlamova
    • 1
    Email author
  • R. B. Seidakhmetova
    • 1
  • K. D. Praliev
    • 1
  1. 1.JSC “A. B. Bekturov Institute of Chemical Sciences”AlmatyRepublic of Kazakhstan

Personalised recommendations