Chemistry of Natural Compounds

, Volume 55, Issue 2, pp 235–238 | Cite as

Determination of the Inhibitory Activity of Ferula sinkiangensis Polysaccharides for Protein Tyrosine Phosphatase 1B

  • S. Wulamu
  • H. Yimamu
  • A. Abuduwaili
  • P. Mutailifu
  • V. V. Maksimov
  • Y. H. Gao
  • A. YiliEmail author
  • H. A. Aisa

Polysaccharide fractions were sequentially extracted in 28.86 wt% yield from roots of Ferula sinkiangensis K. M. Shen. The polysaccharide fractions from F. sinkiangensis were identified as heteropolysaccharides and contained primarily the monosaccharides glucuronic and galacturonic acids, rhamnose, xylose, arabinose, galactose, and fructose. The isolated polysaccharide fractions at low concentrations exhibited in vitro inhibitory activity for protein-tyrosine phosphatase 1B. The degree of inhibition correlated with the galactose content in the polysaccharide fractions.


Ferula sinkiangensis K. M. Shen polysaccharides HPTLC protein-tyrosine phosphatase 1B (PTP1B) inhibitor 



The research was financially supported by the Major Special Project of National Science and Technology, Research and Development of New Ethnic Drug Varieties and Its Key Innovation Technology (2017ZX09301045) and Tianshan Excellence Project in 2017-47 in addition to the Central Asia Drug Research and Development Center of the Chinese Academy of Sciences.


  1. 1.
    M. Elchebly, P. Payette, E. Michaliszyn, W. Cromlish, S. Collins, A. L. Loy, D. Normandin, A. Cheng, J. Himms-Hagen, C.-C. Chan, C. Ramachandran, M. J. Gresser, M. L. Tremblay, and B. Kennedy, Science, 283, 5407 (1999).CrossRefGoogle Scholar
  2. 2.
    A. Salmeen, J. N. Andersen, M. P. Myers, N. K. Tonks, and D. Barford, Mol. Cell, 6, 1401 (2000).CrossRefGoogle Scholar
  3. 3.
    N. K. Tonks and S. K. Muthuswamy, Cancer Cell, 11, 214 (2007).CrossRefGoogle Scholar
  4. 4.
    J. R. Wiener, B. J. M. Kerns, E. L. Harvey, M. R. Conaway, J. D. Iglehart, A. Berchuck, and R. C. Bast, J. Natl. Cancer Inst., 86, 372 (1994).CrossRefGoogle Scholar
  5. 5.
    M. Verma, S. J. Gupta, A. Chaudhary, and V. K. Garg, Bioorg. Chem., 70, 267 (2017).CrossRefGoogle Scholar
  6. 6.
    N. Wang, D. Zhang, X. Mao, F. Zou, H. Jin, and J. Ouyang, Mol. Cell. Endocrinol., 307, 89 (2009).CrossRefGoogle Scholar
  7. 7.
    Y. Wu, J. Ou-Yang, K. Wu, Y. Wang, Y. Zhou, and C. Y. Wen, Acta Pharmacol. Sin., 26, 345 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Zhao, Z. F. Zhang, Y. Ding, J. B. Wang, and Y. Li, Molecules, 17, 7083 (2012).CrossRefGoogle Scholar
  9. 9.
    D. Dastan, P. Salehi, F. Ghanati, A. R. Gohari, H. Maroofi, and N. Alnajar, Ind. Crops Prod., 55, 43 (2014).CrossRefGoogle Scholar
  10. 10.
    J. R. Yang, Z. An, Z. H. Li, S. Jing, and H. L. Qina, Chem. Pharm. Bull., 54, 1595 (2006).CrossRefGoogle Scholar
  11. 11.
    L. X. Xiaojin, J. L. Lin, and Palida, Mod. Chin. Med., 9, 8 (2007).Google Scholar
  12. 12.
    G. Li, X. Li, L. Cao, L. Shen, J. Zhu, J. Zhang, J. Wang, L. Zhang, and J. Si, Fitoterapia, 97, 247 (2014).CrossRefGoogle Scholar
  13. 13.
    Z. Hongquan and H. Jian, Chin. Pharmacol. Bull., 12, 2 (1987).Google Scholar
  14. 14.
    Z. E. Erkulov, M. Kh. Malikova, and R. K. Rakhmanberdyeva, Chem. Nat. Compd., 47, 182 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Kh. Malikova, Kh. Kh. Akhmedova, R. K. Rakhmanberdyeva, and K. S. Zhauynbaeva, Chem. Nat. Compd., 54, 10 (2018).CrossRefGoogle Scholar
  16. 16.
    S. M. Ghulameden, A. Yili, H. Q. Zhao, Y. H. Gao, and H. A. Aisa, Chem. Nat. Compd., 50, 515 (2014).CrossRefGoogle Scholar
  17. 17.
    B. L. Seely, P. A. Staubs, D. R. Reichart, P. Berhanu, K. L. Milarski, A. R. Saltiel, J. Kusari, and J. M. Olefsky, Diabetes, 45, 1379 (1996).CrossRefGoogle Scholar
  18. 18.
    N. K. Tonks, FEBS Lett., 546, 140 (2003).CrossRefGoogle Scholar
  19. 19.
    F. A. Quiocho, Annu. Rev. Biochem., 55, 287 (1986).CrossRefGoogle Scholar
  20. 20.
    A. B. Boraston, V. Notenboom, R. A. J. Warren, D. G. Kilburn, D. R. Rose, and G. Davies, J. Mol. Biol., 327, 659 (2003).CrossRefGoogle Scholar
  21. 21.
    N. Blumenkrantz and G. Asboe-Hansen, Anal. Biochem., 54, 484 (1973).CrossRefGoogle Scholar
  22. 22.
    S. S. Nielsen, in: Food Analysis Laboratory Manual, S. S. Nielsen (ed.), Springer, USA, 2010, pp. 47–53.CrossRefGoogle Scholar
  23. 23.
    M. M. Bradford, Anal. Biochem., 72, 248 (1976).CrossRefGoogle Scholar
  24. 24.
    J. B. W. Hammond and N. J. Kruger, New Protein Techniques, 3rd Ed., Humana Press, New Jersey, 1988, pp. 25–32.CrossRefGoogle Scholar
  25. 25.
    T. R. Burke, B. Ye, X. Yan, S. Wang, Z. Jia, L. Chen, Z. Y. Zhang, and D. Barford, Biochemistry, 35, 15989 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Wulamu
    • 1
    • 2
  • H. Yimamu
    • 3
  • A. Abuduwaili
    • 2
    • 4
  • P. Mutailifu
    • 2
    • 4
  • V. V. Maksimov
    • 5
  • Y. H. Gao
    • 4
    • 6
  • A. Yili
    • 4
    • 6
    Email author
  • H. A. Aisa
    • 4
    • 6
  1. 1.School of Life SciencesYili Normal UniversityXinjiangP. R. China
  2. 2.University of Chinese Academy of ScienceBeijingP. R. China
  3. 3.School of PharmacyXinjiang Medical UniversityUrumqiP. R. China
  4. 4.State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP. R. China
  5. 5.A. S. Sadykov Institute of Bioorganic ChemistryAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan
  6. 6.Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP. R. China

Personalised recommendations