Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 3, pp 559–561 | Cite as

Secondary Metabolites Isolated from the Gorgonian-Derived Fungus Aspergillus ruber and Their Antiviral Activity

  • Ting-Mei Liang
  • Yao-Wei Fang
  • Ji-Yong Zheng
  • Chang-Lun Shao
Article

Herpes simplex virus type-1 (HSV-1) is a widespread ancient human pathogen which is most commonly associated with subclinical and mild infections [1]. HSV-1 infects the majority of the population resulting in transient cold sores or asymptomatic infection that persists lifelong in the sensory ganglia of the infected individuals [2]. It is imperative to develop new and effective anti-HSV drugs. During the last two decades, marine microorganisms have received growing attention as one of the most prolific sources for bioactive metabolites and have great potential to increase the number of marine natural products in clinical trials [3]. Six compounds (1–6) were isolated from the fungus Aspergillus ruber collected from the Xisha Islands. Two benzaldehyde derivatives (1 and 2) showed significant antiviral activity against HSV-1 virus, and compound 1 showed weak antibacterial activity. Herein we report the isolation, structure elucidation, and biological activity of these compounds (1–6).

Fung...

Notes

Acknowledgment

This work was supported by the Program of Natural Science Foundation of Shandong Province of China (No. JQ201510), Marine Special Public Welfare Scientific Research, State Oceanic Administration of China (No. 201405038), the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) [No. KF160411], and the Taishan Scholars Program, China.

References

  1. 1.
    M. P. Nicoll, W. Hann, M. Shivkumar, L. E. R. Harman, V. Connor, H. M. Coleman, J. T. Proenca, and S. Efstathiou, PLoS Pathogens, 12 (2016).Google Scholar
  2. 2.
    N. Abdelmagid, B. Bereczky-Veress, S. Atanur, A. Musilova, V. Zidek, L. Saba, A. Warnecke, M. Khademi, M. Studahl, E. Aurelius, A. Hjalmarsson, A. Garcia-Diaz, C. V. Denis, T. Bergstrom, B. Skoldenberg, I. Kockum, T. Aitman, N. Hubner, T. Olsson, M. Pravenec, and M. Diez, PLoS One, 11 (2016).Google Scholar
  3. 3.
    D. J. Newman and G. M. Cragg, J. Nat. Prod., 79, 629 (2016).CrossRefPubMedGoogle Scholar
  4. 4.
    H. Takashi, F. Mamoru, K. Yasuo, and H. Yuichi, Agric. Biol. Chem., 44, 1685 (1980).Google Scholar
  5. 5.
    K. Arai, Y. Aoki, and Y. Yamamoto, Chem. Pharm. Bull., 37, 621 (1989).CrossRefGoogle Scholar
  6. 6.
    X. W. Zou, Y. Li, X. N. Zhang, Q. Li, X. Liu, Y. Huang, T. Tang, S. J. Zheng, W. M. Wang, and J. T. Tang, Molecules, 19, 17839 (2014).CrossRefPubMedGoogle Scholar
  7. 7.
    A. Dossena, R. Marchelli, and A. Pochini, J.Chem. Soc. Chem. Commun., 771 (1974).Google Scholar
  8. 8.
    H. Fujimoto, T. Fujimaki, E. Okuyama, and M. Yamazaki, Chem. Pharm. Bull., 47, 1426 (1999).CrossRefPubMedGoogle Scholar
  9. 9.
    Y. B. Zhuang, X. C. Teng, Y. Wang, P. P. Liu, H. Wang, J. Li, G. Q. Li, and W. M. Zhu, Tetrahedron, 67, 7085 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. H. Gong, B. Matthews, D. Cheung, T. Tam, I. Gadawski, D. Leung, G. Holan, J. Raff, and S. Sacks, Antivir. Res., 55, 319 (2002).CrossRefPubMedGoogle Scholar
  11. 11.
    C. G. Pierce, P. Uppuluri, A. R. Teistan, J. F. L. Wormley, E. Mowat, G. Ramage, and J. L. Lopez-Ribot, Nat. Protoc., 3, 1494 (2008).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ting-Mei Liang
    • 1
    • 2
  • Yao-Wei Fang
    • 1
  • Ji-Yong Zheng
    • 2
  • Chang-Lun Shao
    • 1
    • 2
  1. 1.Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and PharmacyOcean University of ChinaQingdaoP. R. China
  2. 2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material ResearchQingdaoP. R. China

Personalised recommendations