Chemistry of Natural Compounds

, Volume 54, Issue 3, pp 520–522 | Cite as

A New L-alanine Derivative from the Mangrove Fungus Penicillium chrysogenum V11

Article
  • 10 Downloads

A new L-alanine derivative, N-fumaryl-L-alanine dimethyl ester (1), and a new natural product N,N-bis[(S)-1-methoxycarbonylethyl]fumaric diamide (2), along with three known compounds sohirnone A (3), chaetoglobosin C (4), and chaetoglobosin F (5), were isolated from the mangrove endophytic fungus Penicillium chrysogenum V11. Their structures were elucidated by comprehensive spectroscopic analyses. Primary bioassays showed that compounds 3, 4, and 5 had moderate or weak in vitro antifungal activities on Fusarium oxysporum and/or Rhizoctonia solani.

Keywords

L-alanine derivative antifungal activity mangrove endophytic fungus Penicillium sp 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21102049), the Natural Science Foundation of Guangdong Province of China (2015A030313405, 9451064201003751), the Science and Technology Project for public welfare research and capacity building of Guangdong Province (2016A020222019), the Science and Technology Project of Guangzhou City (201605112013464, 11C12100771), and the Scientific Research Foundation for the Returning Overseas Chinese Scholars, State Education Ministry (2015-311).

References

  1. 1.
    K. R. Duarte, T. A. P. Rocha-Santos, A. C. Freitas, and A. C. Duarte, Trends Anal. Chem., 34, 97 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Debbab, A. H. Aly, W. H. Lin, and P. Proksch, Microb. Biotechnol., 3, 544 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    I. H. Hwang, Y. Che, D. C. Swenson, J. B. Gloer, and D. T. Wicklow, J. Antibiot., 69, 631 (2016).CrossRefPubMedGoogle Scholar
  4. 4.
    J. Wang, W. Ding, R. Wang, Y. Du, H. Liu, X. Kong, and C. Li, Mar. Drugs, 13, 4492 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    W. Li, J. Xu, F. Li, L. Xu, and C. Li, Pharmacogn. Mag., 12, 259 (2016).PubMedPubMedCentralGoogle Scholar
  6. 6.
    J. Wang, S. Huang, C. Li, W. Ding, Z. She, and C. Li, Chem. Nat. Compd., 51, 239 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Streuff, M. Nieger, and K. Muniz, Chem.–Eur. J., 12, 4362 (2006).CrossRefPubMedGoogle Scholar
  8. 8.
    R. P. Maskey, I. Grun-Wollny, and H. Laatsch, J. Nat. Prod., 68, 865 (2005).CrossRefPubMedGoogle Scholar
  9. 9.
    G. Ding, Y. C. Song, J. R. Chen, C. Xu, H. M. Ge, X. T. Wang, and R. X. Tan, J. Nat. Prod., 69, 302 (2006).CrossRefPubMedGoogle Scholar
  10. 10.
    H. Li, J. Xiao, Y. Q. Gao, J. J. Tang, A. L. Zhang, and J. M. Gao, J. Agric. Food Chem., 62, 3734 (2014).CrossRefPubMedGoogle Scholar
  11. 11.
    K. Hayashi, Y. Fujii, R. Sait, H. Kanao, and T. Hino, Agric. Biol. Chem., 30, 1221 (1966).Google Scholar
  12. 12.
    U. Gerhard, M. S. Searle, and D. H. Williams, Bioorg. Med. Chem. Lett., 3, 803 (1993).CrossRefGoogle Scholar
  13. 13.
    S. Huang, H. Chen, W. Li, X. Zhu, W. Ding, and C. Li, Mar. Drugs, 14, 172 (2016).CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials and EnergySouth China Agricultural UniversityGuangzhouP. R. China

Personalised recommendations