Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 3, pp 443–446 | Cite as

Four Major Urinary Metabolites of Liquiritigenin in Rats and Their Anti-Platelet Aggregation Activity

  • Yuan-yuan Li
  • Long Yang
  • Xin Chai
  • Jun-jun Yang
  • Yue-fei Wang
  • Yan Zhu
Article
  • 42 Downloads

Urinary metabolites of liquiritigenin were investigated in rats after intravenous administration. Four major urinary metabolites, isoliquiritigenin (2), liquiritigenin-4′-O-β-D-glucuronide (3), liquiritigenin-7-O-β-Dglucuronide (4), and davidigenin-2′-O-β-D-glucuronide (5), were isolated from the urine of rats. Their structures were elucidated on the basis of extensive spectroscopic methods, among which 5 was a new compound. Compound 2 showed significant inhibition of platelet aggregation induced by ADP, whose 50% inhibitory concentration (IC50) value was 20.38 ± 1.68 μM.

Keywords

liquiritigenin metabolites inhibition of platelet aggregation 

Notes

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant numbers 81403060 and 81202877).

References

  1. 1.
    Q. L. Tian, Y. P. Guan, B. Zhang, and H. Z. Liu, Nat. Prod. Res. Dev., 18, 343 (2006).Google Scholar
  2. 2.
    M. F. Zhang and Y. Q. Shen, Drugs Clin., 26, 261 (2011).Google Scholar
  3. 3.
    B. Wang, Y. X. Wang, H. Y. Zhao, and Y. Zong, J. Jilin Med. Coll., 34, 215 (2013).Google Scholar
  4. 4.
    M. Tawata, K. Aida, T. Noguchi, Y. Ozaki, S. Kume, H. Sasaki, M. Chin, and T. Onaya, Eur. J. Pharmacol., 212, 87 (1992).CrossRefPubMedGoogle Scholar
  5. 5.
    W. W. Tao, J. A. Duan, N. Y. Yang, Y. P. Tang, M. Z. Liu, and Y. F. Qian, Fitoterapia, 83, 422 (2012).CrossRefPubMedGoogle Scholar
  6. 6.
    H. E. Kang, H. Y. Jung, Y. K. Cho, S. H. Kim, S. I. Sohn, S. R. Baek, and M. G. Lee, J. Pharm. Sci., 98, 4327 (2009).CrossRefPubMedGoogle Scholar
  7. 7.
    H. E. Kang, Y. W. Kim, S. I. Sohn, S. R. Baek, J. W. Lee, S. G. Kim, I. Lee, and M. G. Lee, Xenobiotica, 40, 424 (2010).CrossRefPubMedGoogle Scholar
  8. 8.
    H. E. Kang, S. I. Sohn, S. R. Baek, J. W. Lee, and M. G. Lee, J. Pharm. Pharmacol., 63, 49 (2011).CrossRefPubMedGoogle Scholar
  9. 9.
    Y. Y. Li, Z. Z. Jiang, L. Zhang, X. Chai, and Y. F. Wang, Tianjin J. Trad. Chin. Med., 32, 757 (2015).Google Scholar
  10. 10.
    H. Yang, D. Wang, L. Tong, and B. C. Cai, Chem. Nat. Compd., 45, 239 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Shimamura, S. Nakai, K. Yamamoto, N. Hitomi, and E. Yumioka, Shoyakugaku Zasshi, 44, 265 (1990).Google Scholar
  12. 12.
    L. Zhang, D. H. Yang, X. Zhao, F. Xu, J. Liang, Q. L. Zhou, X. Y. Yang, and X. W. Yang, Fitoterapia, 105, 177 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    F. Rene, M. S. Candice, S. Angelique, M. Caroline, K. Karin, S. Heike, C. Alan, W. Gary, and B. Denis, Org. Biomol. Chem., 8, 5199 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Gutmann, L. Bungaruang, H. Weber, M. Leypold, R. Breinbauer, and B. Nidetzky, Green Chem., 16, 4417 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. R. Lu and L. Y. Foo, Phytochemistry, 55, 263 (2000).Google Scholar
  16. 16.
    A. Stochmal, S. Piacente, C. Pizza, F. D. Riccardis, R. Leitz, and W. Oleszek, J. Agric. Food Chem., 49, 753 (2001).CrossRefPubMedGoogle Scholar
  17. 17.
    X. X. Tian, L. Y. Chang, G. Y. Ma, T. Y. Wang, M. Lv, Z. L. Wang, L. P. Chen, Y. F. Wang, X. M. Gao, and Y. Zhu, Biol. Pharm. Bull., 39, 181 (2016).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
  2. 2.Tianjin Key Laboratory of TCM Chemistry and AnalysisTianjin University of Traditional Chinese MedicineTianjinP. R. China

Personalised recommendations