Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 419–420 | Cite as

Chemical Constituents of Bacillus coagulans LL1103

  • Lin Chen
  • Qing-feng Guo
  • Jing-wei Ma
  • Wen-yi Kang

Bacillus coagulans is also classified as Lactobacillus sporogenes [1]; it has been demonstrated that some strains of B. coagulans can survive extremes of heat, acidity of the stomach, and bile acids, to which commonly consumed probiotics are susceptible [2]. In addition, it can inhibit pathogenic bacteria in the intestines. It has been applied in many areas of health care, medicine, food, and pasturage abroad [3]. B. coagulans exhibits antimicrobial activities due to the production of organic acids, bacteriocins (polypeptide) [4, 5]. As part of our work, 12 compounds were isolated and identified from B. coagulans. Their structures were determined by spectroscopic analysis to be cyclo (Gly-Ala) (1) [6], cyclo (Pro-Gly) (2) [7], cyclo (Ala-Pro) (3) [8], thymine (4) [9], cyclo (Gly-Tyr) (5) [10], cyclo (Leu-4-hydroxyl-Pro) (6) [6], pyridoxol (7) [11, 12], cyclo (Ile-Ala) (8) [13], cyclo (Pro-Leu) (9) [14], triethylamine hydroiodide (10) [15], 2,3-butanediol (11) [16], and lauric acid (12)...



This work was supported by the National Natural Science Foundation of China (31501552) and Henan Province University Science and Technology Innovation Team (16IRTSTHN019).


  1. 1.
    J. R. Endres, A. Clewell, K. A. Jade, T. Farber, J. Hauswirth, and A. G. Schauss, Food Chem. Toxicol., 47, 1231 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    J. R. Endres, I. Qureshi, T. Farber, J. Hauswirth, J. Hirka, I. Pasics, and A. G. Schauss, Food Chem. Toxicol., 49, 1174 (2011).CrossRefPubMedGoogle Scholar
  3. 3.
    H. J. Dong, J. Y. Jiang, L. J. Zheng, and J. X. Pang, Food Sci., 31, 292 (2010).Google Scholar
  4. 4.
    De L. Vuyst and F. Leroy, J. Mol. Microbiol. Biotechnol., 13, 194 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    D. Beshkova and G. Frengova, Eng. Life Sci., 12, 419 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Yu, J. H. Wang, S. T. Fang, Z. Z. Jiang, X. Q. Zhou, and C. H. Xia, J. Microbiol. China, 41, 1278 (2014).Google Scholar
  7. 7.
    W. Li, G. C. Wang, X. Q. Zhang, Y. Wang, and W. C. Ye, J. Chin. Mater. Med., 35, 2412 (2010).Google Scholar
  8. 8.
    S. M. Wang, N. H. Tan, Y. B. Yang, and M. He, Nat. Prod. Res. Dev., 16, 383 (2004).Google Scholar
  9. 9.
    Y. Shi, L. Tian, J. Wang, and Y. H. Pei, Chin. J. Mar. Drugs, 25, 6 (2006).Google Scholar
  10. 10.
    D. H. Li, Q. Q. Gu, W. M. Zhu, H. M. Liu, Y. C. Fang, and T. J. Zhu, Chin. J. Antibiot., 30, 449 (2005).Google Scholar
  11. 11.
    G. P. Moloney, D. J. Craik, and M. N. Iskander, Magn. Reson. Chem., 28, 824 (1990).CrossRefGoogle Scholar
  12. 12.
    Z. W. Ying, M. L. Duan, and Y. F. Ji, Chin. J. Pharm., 40, 81 (2009).Google Scholar
  13. 13.
    Y. Li, F. Wang, P. Z. Zhang, and M. Yang, Chin. Med. Mater., 38, 2038 (2015).Google Scholar
  14. 14.
    L. J. Ding, W. Yuan, Q. Peng, H. Sun, and S. H. Xu, Chem. Nat. Compd., 52, 969 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. T. Sun, A. L. Wang, D. H. Li, Z. L. Li, X. Q. Liu, and H. M. Hua, Chin. Trad. Herb. Drugs, 46, 1287 (2015).Google Scholar
  16. 16.
    A. Caligiani, D. Acquotti, G. Palla, and V. Bocchi, Anal. Chim. Acta, 585, 110 (2007).CrossRefPubMedGoogle Scholar
  17. 17.
    B. Xu, P. P. Yang, P. L. Wang, H. L. Ling, and M. Chen, Chin. Med. Mater., 35, 1080 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lin Chen
    • 1
  • Qing-feng Guo
    • 1
  • Jing-wei Ma
    • 1
  • Wen-yi Kang
    • 1
  1. 1.Zhengzhou Key Laboratory of Medicinal Resources Research Huanghe Science and Technology CollegeZhengzhouP. R. China

Personalised recommendations