Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 365–367 | Cite as

Effective Synthetic Method and Rotameric Isomerization of 2,4-Dioxo-1,2,3,4-Tetrahydropyrimidine-5-Maleopimarate

  • I. M. Sakhautdinov
  • R. N. Malikova
  • S. M. Ishbaeva
  • A. N. Lobov
  • L. V. Spirikhin
  • M. S. Yunusov
Article
  • 23 Downloads

Translated from Khimiya Prirodnykh Soedinenii, No. 2, March–April, 2018, pp. 308–309.

Maleopimaric acid and its derivatives exhibit potent biological activities, in particular, antiviral, antibacterial, cytotoxic, antitumor, and antiulcerogenic [1, 2, 3, 4, 5]. Proposed thermal-activation approaches to synthesizing N-imides of the methyl ester of maleopimaric acid (MEMPA) did not always lead to the target products and acceptable MEMPA conversion [6, 7, 8, 9]. Herein, we communicate an effective synthetic method for N-maleopimarimide-substituted 5-aminouracil using ultrasound irradiation in dimethylsulfoxide (DMSO).

Maleopimarimide 1 was synthesized in 18% yield by direct fusion of MEMPA ( 3) and 5-aminouracil ( 2) (Scheme 1). However, condensation in DMSO using a two-fold excess of 2 increased the yield of target product to 69% (Table 1).

Notes

Acknowledgment

The work was performed according to planned scientific research at Ufa Institute of Chemistry, RAS, on the topic “Synthesis of biologically active heterocyclic and terpenoid compounds” (State Reg. No. AAAA-A17-117011910025-6). Information support came from RFBR Grant 13-00-14056. The spectral studies used equipment at the Khimiya CCU, UfIC, RAS.

References

  1. 1.
    E. A. Dikusar, M. P. Bei, A. P. Yuvchenko, V. I. Potkin, N. G. Kozlov, and R. T. Tlegenov, Khim. Rastit. Syrya, No. 1, 105 (2011).Google Scholar
  2. 2.
    O. B. Kazakova, E. V. Tret’yakova, O. S. Kukovinets, G. A. Tolstikov, T. I. Nazyrov, I. V. Chudov, and A. F. Ismagilova, Bioorg. Khim., 36, 832 (2010).PubMedGoogle Scholar
  3. 3.
    G. Yao, M. Ye, R. Huang, Ya. Li, Yo. Zhu, Yi. Pan, Zh. X. Liao, and H. Wang, Bioorg. Med. Chem. Lett., 23, 6755 (2013).CrossRefPubMedGoogle Scholar
  4. 4.
    J. Wang, Y. P. Chen, K. Yao, P. A. Wilbon, W. Zhang, L. Ren, J. Zhou, M. Nagarkatti, C. Wang, F. Chu, X. He, A. W. Decho, and C. Tang, Chem. Commun., 48, 916 (2012).CrossRefGoogle Scholar
  5. 5.
    E. V. Tretyakova, I. E. Smirnova, O. B. Kazakova, G. A. Tolstikov, N. P. Yavorskaya, I. S. Golubeva, R. B. Pugacheva, G. N. Apryshko, and V. V. Poroikov, Bioorg. Med. Chem., 22, 6481 (2014).CrossRefPubMedGoogle Scholar
  6. 6.
    M. P. Bei and A. P. Yuvchenko, Zh. Obshch. Khim., 80 (2), 228 (2010).Google Scholar
  7. 7.
    E. A. Dikusar, M. P. Bei, A. P. Yuvchenko, and V. I. Potkin, Zh. Obshch. Khim., 80 (7), 1154 (2010).Google Scholar
  8. 8.
    Y. Jinxing, N. Xu, Zh. Liu, and L. Wang, ACS Appl. Mater. Interfaces, 4, 2591 (2012).CrossRefGoogle Scholar
  9. 9.
    L. Zhang, Y. Jiang, Zh. Xiong, X. Liu, H. Na, R. Zhang, and J. Zhu, J. Mater. Chem. A, 1, 3263 (2013).CrossRefGoogle Scholar
  10. 10.
    L. H. Zalkow, R. A. Ford, and J. P. Kutney, J. Org. Chem., 27, 3535 (1962).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. M. Sakhautdinov
    • 1
  • R. N. Malikova
    • 1
  • S. M. Ishbaeva
    • 2
  • A. N. Lobov
    • 1
  • L. V. Spirikhin
    • 1
  • M. S. Yunusov
    • 1
  1. 1.Ufa Institute of Chemistry, Russian Academy of SciencesUfaRussia
  2. 2.Bashkir State UniversityUfaRussia

Personalised recommendations