Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 360–361 | Cite as

Diterpenoids and Flavonoids from Pulicaria gnaphalodes

  • K. A. Eshbakova
  • Kh. I. Khasanova
  • B. D. Komilov
  • Sh. O. Melieva
  • H. A. Aisa
Article
  • 49 Downloads

The plant Pulicaria gnaphalodes (Asteraceae) is broadly distributed in Central Asia and is used in folk medicine as an antifungal agent. Previously, we isolated and identified 25 compounds such as diterpenoids, coumarins, sterols, and phenolic compounds from the aerial part of the plant collected in Tashkent Oblast (Uzbekistan) [1, 2, 3, 4].

Research on the chemical composition of the aerial part of P. gnaphalodes [2, 3, 4] continued with column chromatography over silica gel and Sephadex LH-20 of the CHCl3 and n-BuOH fractions with elution by gradients of hexane–EtOAc (10:1–1:1), CHCl3–MeOH (20:1–1:1), and MeOH–H2O (6:4) to isolate six diterpenoid and flavonoid compounds.

The chemical structures of the isolated compounds were identified based on PMR, 13C NMR, and 2D experiments in addition to comparisons with the literature.

Salvin (1), C20H26O3. 1H NMR spectrum (400 MHz, CDCl3, δ, ppm, J/Hz): 0.88 (3H, s, CH3-20), 1.01 (3H, d, J = 6.1, CH3-17), 1.04 (3H, s, CH3-19), 1.27 (1H, m,...

Notes

Acknowledgment

The work was financially supported by the Program of Applied Scientific Research of the AS, RUz (Grant FA-A11-T040), Foundations and Programs for International Scientific and Technical Collaboration Projects (Grant No. 2016YFE0120600), and the Central Asia Drug Research and Development Center of the Chinese Academy of Sciences.

References

  1. 1.
    K. A. Eshbakova and A. I. Saidkhodzhaev, Chem. Nat. Compd., 37, 196 (2001).CrossRefGoogle Scholar
  2. 2.
    K. A. Eshbakova, Med. Plants, 3 (2), 161 (2011).Google Scholar
  3. 3.
    K. A. Eshbakova, A. Yili, and H. A. Aisa, Chem. Nat. Compd., 49, 737 (2014).CrossRefGoogle Scholar
  4. 4.
    K. A. Eshbakova, Z. O. Toshmatov, Sh. O. Melieva, H. A. Aisa, and N. D. Abdullaev, Chem. Nat. Compd., 52, 713 (2016).CrossRefGoogle Scholar
  5. 5.
    M. R. Nurmukhamedova, Sh. Z. Kasymov, N. D. Abdullaev, G. P. Syiyakin, and M. R. Yagudaev, Chem. Nat. Compd., 21, 201 (1985).Google Scholar
  6. 6.
    M. A. Mesaik, Azizuddin, S. Murad, K. M. Khan, R. B. Tareen, A. Ahmed, Atta-ur-Rahman, and M. I. Choudhary, Phytother. Res., 23, 1516 (2009).Google Scholar
  7. 7.
    S. Pacifico, B. D′Abrosca, M. Scognamiglio, M. Gallicchio, S. Galasso, P. Monaco, and A. Fiorentino, The Open Nat. Prod. J., 6, 5 (2013).CrossRefGoogle Scholar
  8. 8.
    H. H. Yang, K. Hwangbo, M. S. Zheng, J. H. Cho, J.-K. Son, H. Y. Kim, S. H. Baek, H. C. Choi, S. Y. Park, and J.-R. Kim, Arch. Pharm. Res., Published online: 18 March 2014.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.S. Yu. Yunusov Institute of the Chemistry of Plant SubstancesAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan
  2. 2.Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP. R. China
  3. 3.Key Laboratory of Xinjiang Indigenous Medicinal Plant Resources Utilization, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP. R. China
  4. 4.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations