Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 293–300 | Cite as

Synthetic Transformations of Higher Terpenoids. 36.* Synthesis of 13-(Oxazol-5-Yl)-15,16-Bisnorisopimaranes

  • M. A. Gromova
  • Yu. V. Kharitonov
  • T. V. Rybalova
  • E. E. Shul’ts
Article
  • 81 Downloads

The conditions for oxidizing methyl isopimarate to the 15-oxo-15,16-dihydroisopimarate were studied. The latter was used for one-pot syntheses of 13-(oxazol-5-yl)-15,16-bisnorisopimarates that included formation of the 16-oxoaldehyde isopimarate and its condensation with α-amino acids. The structures of the synthesized compounds were confirmed by IR, UV, and NMR spectral data and an XSA.

Keywords

isopimaric acid oxazoles amino acids Wacker oxidation Kornblum oxidation XSA 

Notes

Acknowledgment

The work was financially supported by grants of the RFBR Nos. 15-03-06546 and 17-43-543235 (p_mol_a). Analytical and spectral studies were performed at the Chemical Service Center for Collective Use at NIOCh, SB, RAS. We thank E. G. Zhizhin and Yu. A. Rodikov for supplying the heteropolyacid-based oxidizing systems.

References

  1. 1.
    Yu. V. Kharitonov, M. M. Shakirov, M. A. Pokrovskii, A. G. Pokrovskii, and E. E. Shul′ts, Chem. Nat. Compd., 53, 77 (2017).CrossRefGoogle Scholar
  2. 2.
    V. A. Pentegova, Zh. V. Dubovenko, V. A. Raldugin, and E. N. Shmidt, Terpenoids of Coniferous Plants [in Russian], Izd. Nauka, Novosibirsk, 1987, 36 pp.Google Scholar
  3. 3.
    G. A. Tolstikov, T. G. Tolstikova, E. E. Shul′ts, S. E. Tolstikov, and M. V. Khvostov, Resin Acids of Russian Conifers. Chemistry and Pharmacology [in Russian], B. A. Trofimov (ed.), Geo, Novosibirsk, 2011, 395 pp.Google Scholar
  4. 4.
    R. M. P. Gutierrez and E. G. Baez, J. Asian Nat. Prod. Res., 13, 934 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Bisio, D. Fraternale, G. Damonte, E. Millo, A. P. Lanteri, E. Russo, G. Romussi, B. Parodi, D. Ricci, and N. De Tommasi, Nat. Prod. Commun., 4, 1621 (2009).PubMedGoogle Scholar
  6. 6.
    E. M. Pferschy-Wenzig, O. Kunert, A. Presser, and R. Bauer, J. Agric. Food Chem., 56, 11688 (2008).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Tanaka, H. Tokuda, and Y. Ezaki, Phytomedicine, 15, 985 (2008).CrossRefPubMedGoogle Scholar
  8. 8.
    S. Salari, M. S. Ejneby, J. Brask, and F. Elinder, Acta Physiol., 222, e12895 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Janocha, J. Zapp, M. Hutter, M. Kleser, J. Bohlmann, and R. Bernhardt, ChemBioChem, 14, 467 (2013).CrossRefPubMedGoogle Scholar
  10. 10.
    Yu. V. Kharitonov, E. E. Shul′ts, and M. M. Shakirov, Chem. Nat. Compd., 49, 1067 (2014).CrossRefGoogle Scholar
  11. 11.
    Y.-X. Chen, Z.-D. Zhao, Y. Gu, and Y.-J. Lu, Adv. Mater. Res., 634, 440 (2013).Google Scholar
  12. 12.
    M. A. Timoshenko, A. B. Ayusheev, Y. V. Kharitonov, M. M. Shakirov, and E. E. Shul′ts, Chem. Nat. Compd., 50, 673 (2014).CrossRefGoogle Scholar
  13. 13.
    J. Liu, Y. Lu, J. Wang, L. Bi, and Z. Zhao, Chin. J. Org. Chem., 37, 731 (2017).CrossRefGoogle Scholar
  14. 14.
    A. Nagatsu, H. Kajitani, and J. Sakakibara, Tetrahedron Lett., 36 (23), 3097 (1995); C. Garcia-Ruiz and F. Sarabia, Mar. Drugs, 12, 1580 (2014).Google Scholar
  15. 15.
    A. C. Giddens, H. I. M. Boshoff, S. G. Franzblau, C. E. Barry, III, and B. R. Copp, Tetrahedron Lett., 46, 7355 (2005).CrossRefGoogle Scholar
  16. 16.
    P. Mura, F. Maestrelli, C. Aguzzi, and C. Viseras, Int. J. Pharm., 509, 8 (2016).CrossRefPubMedGoogle Scholar
  17. 17.
    A. Benardeau, J. Benz, A. Binggeli, D. Blum, M. Boehringer, U. Grether, H. Hilpert, B. Kuhn, H. P. Marki, M. Meyer, K. Puntener, S. Raab, A. Ruf, D. Schlatter, and P. Mohr, Bioorg. Med. Chem. Lett., 19, 2468 (2009).CrossRefPubMedGoogle Scholar
  18. 18.
    W. Xu, U. Kloeckner, and B. Nachtsheim, J. Org. Chem., 78, 6065 (2013).CrossRefPubMedGoogle Scholar
  19. 19.
    J. Xiang, J. Wang, M. Wang, X. Meng, and A. Wu, Tetrahedron, 70, 7470 (2014).CrossRefGoogle Scholar
  20. 20.
    T. Hu, H. Yan, X. Liu, C. Wu, Y. Fan, J. Huang, and G. Huang, Synlett, 26, 2866 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Muzart, Tetrahedron, 63, 7505 (2007).CrossRefGoogle Scholar
  22. 22.
    H. Yatagai, Y. Yamamoto, and K. Maruyama, J. Am. Chem. Soc., 102, 4548 (1980).CrossRefGoogle Scholar
  23. 23.
    P. Hellissier, P. Y. Michellys, and M. Santelli, Tetrahedron, 53, 7577 (1997).CrossRefGoogle Scholar
  24. 24.
    P. Teo, Z. K. Wickens, G. Dong, and R. H. Grubbs, Org. Lett., 14, 3237 (2012).CrossRefPubMedGoogle Scholar
  25. 25.
    J. A. Wright, M. J. Gaunt, and J. B. Spencer, Chem. Eur. J., 12, 949 (2006).CrossRefPubMedGoogle Scholar
  26. 26.
    Y. P. Zhu, F. C. Jia, M. C. Liu, and A. X. Wu, Org. Lett., 14, 4414 (2012).CrossRefPubMedGoogle Scholar
  27. 27.
    Y.-P. Zhu, J.-J. Yuan, Q. Zhao, M. Lian, Q.-H. Gao, M.-C. Liu, Y. Yang, and A.-X. Wu, Tetrahedron, 68, 173 (2012).CrossRefGoogle Scholar
  28. 28.
    G. Yin, B. Zhou, X. Meng, A. Wu, and Y. Pan, Org. Lett., 8, 2245 (2006).CrossRefPubMedGoogle Scholar
  29. 29.
    G. Yin, M. Gao, N. She, S. Hu, A. Wu, and Y. Pan, Synthesis, 20, 3113 (2007).Google Scholar
  30. 30.
    R. S. Rowland and R. Taylor, J. Phys. Chem., 100, 7384 (1996).CrossRefGoogle Scholar
  31. 31.
    V. F. Odyakov and E. G. Zhizhina, React. Kinet. Catal. Lett., 95, 21 (2008).CrossRefGoogle Scholar
  32. 32.
    N. V. Gromov, O. P. Taran, I. V. Delidovich, A. V. Pestunov, Y. A. Rodikova, E. G. Zhizhina, and V. N. Parmon, Catal. Today, 278, 74 (2016).CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick, SADABS, Program for Area Detector Adsorption Correction, Institute for Inorganic Chemistry, University of Gottingen, Germany, 1996.Google Scholar
  34. 34.
    G. M. Sheldrick, SHELX-97 – Programs for Crystal Structure Analysis, Release 97-2, University of Gottingen, Germany.Google Scholar
  35. 35.
    Cambridge Structural Database (Version 5.27), University of Cambridge, UK; F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 58, 380 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Gromova
    • 1
  • Yu. V. Kharitonov
    • 1
  • T. V. Rybalova
    • 1
    • 2
  • E. E. Shul’ts
    • 1
    • 2
  1. 1.N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations