Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 289–292 | Cite as

Studies Towards the Synthesis of the Core of Endiandric Acid H

  • Shaojun Zheng
  • Dandan Yang
  • Rui Zhu
  • David R. Spring
Article

In the presence of a CuBr·SMe2 catalytic system, a very simple and efficient approach for the synthesis of the key precursor of the core of endiandric acids starting from the readily and abundantly available 3-butyn-1-ol in five linear steps with an overall yield of 40% was developed.

Keywords

endiandric acids H synthesis CuBr·SMe2 natural products 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21502073), the Natural Science Foundation of Jiangsu Province (Grant No. BK 20150465), and the Collaborative Innovation Center of Ship Technology in Jiangsu Colleges and Universities/Marine Equipment and Technology Institute for Jiangsu University of Scince and Technology.

References

  1. 1.
    D. J. Newman and G. M. Cragg, Nat. Prod., 75, 311 (2012).CrossRefGoogle Scholar
  2. 2.
    M. H. Flight, Nature, 502, S50 (2013).CrossRefPubMedGoogle Scholar
  3. 3.
    W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, and B. M. Gatehouse, J. Chem. Soc., Chem. Commun., 162 (1980).Google Scholar
  4. 4.
    W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, and B. M. Gatehouse, Aust. J. Chem., 34, 1655 (1981).CrossRefGoogle Scholar
  5. 5.
    J. E. Banfield, D. S. C. Black, S. R. Johns, and R. I. Willing, Aust. J. Chem., 35, 2247 (1982).CrossRefGoogle Scholar
  6. 6.
    K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, and J. Uenishi, J. Am. Chem. Soc., 104, 5555 (1982).CrossRefGoogle Scholar
  7. 7.
    K. C. Nicolaou, R. E. Zipkin, and N. A. Petasis, J. Am. Chem. Soc., 104, 5558 (1982).CrossRefGoogle Scholar
  8. 8.
    K. C. Nicolaou, N. A. Petasis, and R. E. Zipkin, J. Am. Chem. Soc., 104, 5560 (1982).CrossRefGoogle Scholar
  9. 9.
    P. S. Yang, M. J. Cheng, C. F. Peng, J. J. Chen, and I. S. Chen, J. Nat. Prod., 72, 53 (2008).CrossRefGoogle Scholar
  10. 10.
    J. R. Chouna, P. A. Nkeng-Efouet, B. N. Lenta, K. P. Devkota, B. Neumann, H.-G. Stammler, S. F. Kimbu, and N. Sewald, Phytochemistry, 70, 684 (2009).CrossRefPubMedGoogle Scholar
  11. 11.
    J. R. Chouna, P. A. Nkeng-Efouet, B. N. Lenta, J. D. Wansi, S. F. Kimbu, and N. Sewald, Phytochem. Lett., 3, 13 (2010).CrossRefGoogle Scholar
  12. 12.
    J. E. Banfield, D. S. Black, D. J. Collins, B. P. M. Hyland, J. J. Lee, and S. R. Pranowo, Aust. J. Chem., 47, 587 (1994).CrossRefGoogle Scholar
  13. 13.
    D. S. Surry, X. Su, D. J. Fox, V. Franckevicius, S. J. F. Macdonald, and D. R. Spring, Angew. Chem. Int. Ed., 44, 1870 (2005).CrossRefGoogle Scholar
  14. 14.
    X. Su, D. S. Surry, R. J. Spandl, and D. R. Spring, Org. Lett., 10, 2593 (2008).CrossRefPubMedGoogle Scholar
  15. 15.
    D. S. Surry, D. J. Fox, S. J. F. Macdonald, and D. R. Spring, Chem. Commun., 2589 (2005).Google Scholar
  16. 16.
    X. Su, D. J. Fox, D. T. Blackwell, K. Tanaka, and D. R. Spring, Chem. Commun., 3883 (2006).Google Scholar
  17. 17.
    D. S. Surry and D. R. Spring, Chem. Soc. Rev., 35, 218 (2006).CrossRefPubMedGoogle Scholar
  18. 18.
    P. S. Yang, M. J. Cheng, J. J. Chen, and I. S. Chen, Helv. Chim. Acta, 91, 2130 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shaojun Zheng
    • 1
    • 2
  • Dandan Yang
    • 1
  • Rui Zhu
    • 1
  • David R. Spring
    • 2
  1. 1.School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangP. R. China
  2. 2.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations