Chemistry of Natural Compounds

, Volume 54, Issue 1, pp 147–152 | Cite as

Alkyl- and Acyl-Derivatives of Copsinine and Pseudocopsinine and Their Crystal Structures

  • Sh. M. Adizov
  • B. Tashkhodzhaev
  • Pratik P. Upadhyay
  • P. Kh. Yuldashev
  • M. M. Mirzaeva

Acyl- and alkyl-derivatives at the N1 and N4 atoms, respectively, of the indoline alkaloids copsinine (1) and pseudocopsinine (2), which were isolated from the plant Vinca erecta, were synthesized. Alkaloids 1 and 2 reacted with alkyl halides to give N4 substitution; with acetic anhydride, N1. In turn, N1-acyl-1 and -2 reacted with alkyl halides to bond the alkyl radical to the N4 position. Reaction products were identified using IR spectroscopy and HPLC-MS. Their structures were elucidated by X-ray crystal structure analyses (XSAs). The tetrahedral hybridization of N1 in the indoline alkaloids was favorable for forming their N1-acetyl derivatives, which is improbable in indole and α-methyleneindoline alkaloids.


indoline alkaloids copsinine pseudocopsinine Vinca erecta acylation alkylation XSA 



The work was sponsored by the Basic Research Program of the Academy of Sciences of the Republic of Uzbekistan, Grant VA-FA-F6-010.


  1. 1.
    F. S. Sadritdinov and A. G. Kurmukov, Pharmacology of Plant Alkaloids and Their Use in Medicine [in Russian], Meditsina, Tashkent, 1980, pp. 20–78.Google Scholar
  2. 2.
    A. G. Kurmukov and U. B. Zakirov, Alkaloids and Preparations of Medicinal Herbs for Treating Hypertension [in Russian], Ibn Sino, Tashkent, 1992, pp. 57–60.Google Scholar
  3. 3.
    Z. Subhan and I. Hindmarch, Eur. J. Clin. Pharm., 28, 567 (1985).CrossRefGoogle Scholar
  4. 4.
    G. Szilagyi, Z. Nagy, L. Balkay, I. Boros, M. Emri, and L. S. Marian, J. Neurol. Sci., 229, 275 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    G. I. David and S. M. Sami, J. Pharm. Sci., 68, 1403 (1979).CrossRefGoogle Scholar
  6. 6.
    Kh. N. Aripov, Chem. Nat. Compd., 13, 624 (1977).CrossRefGoogle Scholar
  7. 7.
    G. V. Lavrenova and V. K. Lavrenov, Encyclopedia of Medicinal Plants [in Russian], Vol. 1, Donetsk, Ukraine, 1997, 84 pp.Google Scholar
  8. 8.
    Sh. M. Adizov, B. Tashkhodzhaev, R. Zh. Kunafiev, M. M. Mirzaeva, P. P. Upadhyay, and P. Kh. Yuldashev, J. Struct. Chem., 57 (8), 1626 (2016).CrossRefGoogle Scholar
  9. 9.
    Sh. M. Adizov, B. Tashkhodzhaev, R. Zh. Kunafiev, M. M. Mirzaeva, and P. Kh. Yuldashev, J. Struct. Chem., 58 (2), 291 (2017).CrossRefGoogle Scholar
  10. 10.
    Chemist’s Handbook 21. Chemistry and Chemical Engineering, Moscow, 1954, p. 257.Google Scholar
  11. 11.
    I. I. Grandberg, Organic Chemistry [in Russian], Drofa, Moscow, 2003.Google Scholar
  12. 12.
    CrysAlisPro. Oxford Diffraction Ltd., Yarnton, England, 2009.Google Scholar
  13. 13.
    Bruker. APEX2 (Version 2013.62), Bruker AXS Inc., Madison, Wisconsin, USA, 2013.Google Scholar
  14. 14.
    G. M. Sheldrick, Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen, Gottingen, 1996.Google Scholar
  15. 15.
    G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 64, 112 (2008).Google Scholar
  16. 16.
    G. M. Sheldrick, Acta Crystallogr., Sect. C: Cryst. Struct. Chem., 71, 3 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sh. M. Adizov
    • 1
  • B. Tashkhodzhaev
    • 1
  • Pratik P. Upadhyay
    • 2
  • P. Kh. Yuldashev
    • 1
  • M. M. Mirzaeva
    • 1
  1. 1.S. Yu. Yunusov Institute of the Chemistry of Plant SubstancesAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan
  2. 2.University of Copenhagen, Department of PharmacyCopenhagenDenmark

Personalised recommendations