Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 1, pp 117–123 | Cite as

New Synthesis of Castasterone

  • V. A. Khripach
  • V. N. Zhabinskii
  • A. L. Gurskii
  • A. V. Kolosova
  • O. V. Gulyakevich
  • O. V. Konstantinova
  • A. V. Antonchik
  • A. A. Pap
Article
  • 58 Downloads

An improved synthesis that could produce gram quantities of castasterone was proposed. The starting material was stigmasterol, the cyclic part of which was transformed in the first synthetic step into the 3α,5-cyclo-6-ketone. The side-chain carbon skeleton in the target compound was constructed with the required stereochemistry of the C-24 methyl via addition of methylacetylene, hydrogenation of the propargyl alcohol over Lindlar catalyst, and Claisen rearrangement. Diols were introduced using Sharpless asymmetric dihydroxylation of the intermediate ∆2,22-dienone in the presence of (DHQD)2AQN. A unique feature of the synthesis was the avoidance of chromatographic separations of propargyl alcohols with similar chromatographic mobilities because the C-22 diastereomers were enriched in subsequent redox reactions.

Keywords

brassinosteroids castasterone Claisen rearrangement diastereomeric enrichment 

Notes

Acknowledgment

The work was sponsored by Russian Science Foundation (RSF) Grant No. 16-16-04057.

References

  1. 1.
    M. D. Grove, G. F. Spencer, W. K. Rohwedder, N. Mandava, J. F. Worley, J. D. Warthen, G. L. Steffens, J. L. Flippen-Anderson, and J. C. Cook, Nature, 281, 216 (1979).CrossRefGoogle Scholar
  2. 2.
    V. A. Khripach, F. A. Lakhvich, and V. N. Zhabinskii, Brassinosteroids [in Russian], Nauka i Tekhnika, Minsk, 1993.Google Scholar
  3. 3.
    V. A. Khripach, V. N. Zhabinskii, and A. de Groot, Brassinosteroids. A New Class of Plant Hormones, Academic Press, San Diego, 1999.Google Scholar
  4. 4.
    S. Hayat and A. Ahmad (eds.), Brassinosteroids: Bioactivity and Crop Production, Kluwer Academic Publisher, 2003.Google Scholar
  5. 5.
    S. Hayat and A. Ahmad (eds.), Brassinosteroids: A Class of Plant Hormone, Springer, Dordrecht, 2011.Google Scholar
  6. 6.
    S. Fung and J. B. Siddall, J. Am. Chem. Soc., 102, 6580 (1980).CrossRefGoogle Scholar
  7. 7.
    M. Ishiguro, S. Takatsuto, M. Morisaki, and N. Ikekawa, J. Chem. Soc., Chem. Commun., 962 (1980).Google Scholar
  8. 8.
    K. Mori, M. Sakakibara, Y. Ichikawa, H. Ueda, K. Okada, T. Umemura, G. Yabuta, S. Kuwahara, M. Kondo, M. Minobe, and A. Sogabe, Tetrahedron, 38, 2099 (1982).CrossRefGoogle Scholar
  9. 9.
    T. Kametani, M. Kigawa, M. Tsubuki, and T. Honda, J. Chem. Soc., Perkin Trans. 1, 1503 (1988).Google Scholar
  10. 10.
    T. G. Back, K. Brunner, M. V. Krishna, and E. K. Y. Lai, Can. J. Chem., 67, 1032 (1989).CrossRefGoogle Scholar
  11. 11.
    V. A. Khripach, V. N. Zhabinskii, V. K. Ol’khovik, and F. A. Lakhvich, Zh. Org. Khim., 26, 1966 (1990).Google Scholar
  12. 12.
    W. S. Zhou, L. F. Huang, L. Q. Sun, and X. F. Pan, Tetrahedron Lett., 32, 6745 (1991).CrossRefGoogle Scholar
  13. 13.
    W. S. Zhou and Z. W. Shen, J. Chem. Soc., Perkin Trans. 1, 2827 (1991).Google Scholar
  14. 14.
    T. Furuta and Y. Yamamoto, J. Org. Chem., 57, 2981 (1992).CrossRefGoogle Scholar
  15. 15.
    W. S. Zhou and L. F. Huang, Tetrahedron, 48, 1837 (1992).CrossRefGoogle Scholar
  16. 16.
    B. G. Hazra, P. L. Joshi, B. B. Bahule, N. P. Argade, V. S. Pore, and M. D. Chordia, Tetrahedron, 50, 2523 (1994).CrossRefGoogle Scholar
  17. 17.
    J. P. Marino, A. de Dios, L. J. Anna, and R. F. de la Pradilla, J. Org. Chem., 61, 109 (1996).CrossRefGoogle Scholar
  18. 18.
    F. Werner, G. Parmentier, B. Luu, and L. Dinan, Tetrahedron, 52, 5525 (1996).CrossRefGoogle Scholar
  19. 19.
    A. L. Hurski, Y. V. Ermolovich, V. N. Zhabinskii, and V. A. Khripach, Org. Biomol. Chem., 13, 1446 (2015).CrossRefPubMedGoogle Scholar
  20. 20.
    V. A. Khripach, V. N. Zhabinskii, V. K. Ol’khovik, and A. A. Akhrem, Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk, 69 (1990).Google Scholar
  21. 21.
    K. Okada and K. Mori, Agric. Biol. Chem., 47, 89 (1983).Google Scholar
  22. 22.
    V. A. Khripach, V. N. Zhabinskii, and V. K. Ol’khovik, Chem. Nat. Compd., 30, 352 (1994).CrossRefGoogle Scholar
  23. 23.
    M. Anastasia, P. Allevi, P. Ciuffreda, and A. Fiecchi, J. Chem. Soc., Perkin Trans. 1, 2365 (1983).Google Scholar
  24. 24.
    M. Anastasia, P. Ciuffreda, M. Delpuppo, and A. Fiecchi, J. Chem. Soc., Perkin Trans. 1, 383 (1983).Google Scholar
  25. 25.
    S. Takatsuto, T. Watanabe, S. Fujioka, and A. Sakurai, J. Chem. Res., Synop., 134 (1997).Google Scholar
  26. 26.
    T. Watanabe, S. Takatsuto, S. Fujioka, and A. Sakurai, J. Chem. Res., Synop., 360 (1997).Google Scholar
  27. 27.
    V. A. Khripach, V. N. Zhabinskii, O. V. Konstantinova, N. B. Khripach, A. P. Antonchick, and B. Schneider, Steroids, 67, 597 (2002).CrossRefPubMedGoogle Scholar
  28. 28.
    M. M. Midland and Y. C. Kwon, Tetrahedron Lett., 25, 5981 (1984).CrossRefGoogle Scholar
  29. 29.
    M. Anastasia, P. Allevi, P. Ciuffreda, and A. Oleotti, Steroids, 45, 561 (1985).CrossRefPubMedGoogle Scholar
  30. 30.
    C. W. Shoppee, D. N. Jones, and G. H. R. Summers, J. Chem. Soc., 3100 (1957).Google Scholar
  31. 31.
    V. N. Zhabinskii, V. A. Khripach, and V. K. Ol’khovik, Zh. Org. Khim., 32, 327 (1996).Google Scholar
  32. 32.
    E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder, and K. B. Sharpless, J. Am. Chem. Soc., 110, 1968 (1988).Google Scholar
  33. 33.
    H. Becker and K. B. Sharpless, Angew. Chem., Int. Ed. Engl., 35, 448 (1996).CrossRefGoogle Scholar
  34. 34.
    V. A. Khripach, V. N. Zhabinskii, G. V. Ivanova, and N. B. Khripach, Vestsi Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk, 46 (2007).Google Scholar
  35. 35.
    A. L. Hurski, V. N. Zhabinskii, and V. A. Khripach, Steroids, 77, 780 (2012).CrossRefPubMedGoogle Scholar
  36. 36.
    T. Ando, M. Aburatani, N. Koseki, S. Asakawa, T. Mouri, and H. Abe, Magn. Reson. Chem., 31, 94 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Khripach
    • 1
    • 2
  • V. N. Zhabinskii
    • 1
  • A. L. Gurskii
    • 1
  • A. V. Kolosova
    • 1
  • O. V. Gulyakevich
    • 1
  • O. V. Konstantinova
    • 1
  • A. V. Antonchik
    • 1
  • A. A. Pap
    • 1
  1. 1.Institute of Bioorganic Chemistry, National Academy of Sciences of BelarusMinskBelarus
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations