Chemistry of Natural Compounds

, Volume 54, Issue 1, pp 106–111 | Cite as

Synthesis and Cytotoxicity Evaluation of Pentacyclic Triterpene–Phenol Nitrogen Mustard Conjugates

  • Jia-yan Huang
  • Lin-dong Yang
  • Chun-hua Su
  • Xiang-wu Chu
  • Jiang-yu Zhang
  • Sheng-ping Deng
  • Ke-guang Cheng

Using a reported pharmacophore, 4-[N,N-bis(2-chloroethyl)-amino]phenol, and pentacyclic triterpenes, pharmacologically and structurally diverse components of natural products, six pentacyclic triterpene-4-[N,N-bis(2-chloroethyl)-amino]phenol conjugates were synthesized by click chemistry. Their cytotoxicities against the BEL-7404 and NCI-H460 tumor cell lines were evaluated by the MTT assay. The in vitro results from the cytotoxicity assay indicated that at a compound concentration of 20 μM, these conjugates showed low toxicity (< 16%) toward the tested tumor cells in culture.


pentacyclic triterpenes nitrogen mustards 4-[N,N-bis(2-chloroethyl)-amino]phenol cytotoxicity 



This study was financially supported by grants from the National Natural Science Foundation of PRC (21562006), Guangxi Natural Science Foundation of China (2015GXNSFAA139186), Guangxi_s Medicine Talented Persons Small Highland Foundation (1506), Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), and Ministry of Education of China (CMEMR2013-A01, CMEMR2013-C02).


  1. 1.
    P. G. Komarov, E. A. Komarova, R. V. Kondratov, K. Christov-Tselkov, J. S. Coon, M. V. Chernov, and A. V. Gudkov, Science, 285, 1733 (1999).CrossRefPubMedGoogle Scholar
  2. 2.
    A. J. Wood, W. E. Evans, and H. L. McLeod, N. Engl. J. Med., 348, 538 (2003).CrossRefGoogle Scholar
  3. 3.
    T. Tsuruo, M. Naito, A. Tomida, N. Fujita, T. Mashima, H. Sakamoto, and N. Haga, Cancer Sci., 94, 15 (2003).CrossRefPubMedGoogle Scholar
  4. 4.
    C. G. Zubrod, M. Schneiderman, E. Frei, C. Brindley, G. L. Gold, B. Shnider, R. Oviedo, J. Gorman, R. Jones, and U. Jonsson, J. Chronic Dis., 11, 7 (1960).CrossRefGoogle Scholar
  5. 5.
    K. W. Kohn, C. L. Spears, and P. Doty, J. Mol. Biol., 19, 266 (1966).CrossRefPubMedGoogle Scholar
  6. 6.
    L. Lindahl, M. FengerGron, and L. Iversen, Br. J. Dermatol., 170, 699 (2014).CrossRefPubMedGoogle Scholar
  7. 7.
    L. L. Zhu, S. Zheng, H. Wei, Y. X. Hong, L. Zhang, L. Zhang, H. D. Chen, and X. H. Gao, Dermatol. Ther., 27, 52 (2014).CrossRefPubMedGoogle Scholar
  8. 8.
    H. B. Zhang, J. J. Xue, X. L. Zhao, D. G. Liu, and Y. Li, Chin. Chem. Lett., 20, 680 (2009).CrossRefGoogle Scholar
  9. 9.
    R. Malaviya, A. Venosa, L. Hall, A. J. Gow, P. J. Sinko, J. D. Laskin, and D. L. Laskin, Toxicol. Appl. Pharm., 265, 279 (2012).CrossRefGoogle Scholar
  10. 10.
    P. Saha, C. Debnath, and G. Berube, J. Steroid. Biochem., 137, 271 (2013).Google Scholar
  11. 11.
    D. Kumar, N. Tewari-Singh, C. Agarwal, A. K. Jain, S. Inturi, R. Kant, C. W. White, and R. Agarwal, Toxicol. Lett., 235, 161 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    C. Bauguess, S. P. Chang, and J. Wynn, J. Pharm. Sci., 71, 1349 (1982).CrossRefPubMedGoogle Scholar
  13. 13.
    W. Chen, Y. Han, and X. Peng, Chem. Eur. J., 20, 7410 (2014).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Gupta, Chem. Rev., 94, 1507 (1994).CrossRefGoogle Scholar
  15. 15.
    S. Vickers, P. Hebborn, J. Moran, and D. Triggle, J. Med. Chem., 12, 491 (1969).CrossRefPubMedGoogle Scholar
  16. 16.
    A. Panthananickal, C. Hansch, and A. Leo, J. Med. Chem., 22, 1267 (1979).CrossRefPubMedGoogle Scholar
  17. 17.
    D. Niculescu-Duvaz, I. Niculescu-Duvaz, F. Friedlos, J. Martin, R. Spooner, L. Davies, R. Marais, and C. J. Springer, J. Med.Chem., 41, 5297 (1998).CrossRefPubMedGoogle Scholar
  18. 18.
    W. Chen, K. Balakrishnan, Y. Kuang, Y. Han, M. Fu, V. Gandhi, and X. Peng, J. Med. Chem., 57, 4498 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    R. Paduch and M. Kandefer-Szerszen, Mini-Rev. Org. Chem., 11, 262 (2014).Google Scholar
  20. 20.
    C. Soica, C. Trandafirescu, C. Danciu, D. Muntean, C. Dehelean, and G. Simu, Protein Peptide Lett., 21, 1137 (2014).CrossRefGoogle Scholar
  21. 21.
    L. C. Agra, J. N. Ferro, F. T. Barbosa, and E. Barreto, J. Dermatol. Treat., 26, 465 (2015).CrossRefGoogle Scholar
  22. 22.
    S. M. Kamble, S. N. Goyal, and C. R. Patil, RSC Adv., 4, 33370 (2014).CrossRefGoogle Scholar
  23. 23.
    W. Zhang, X. Men, and P. Lei, J. Cancer Res. Ther., 10, 14 (2014).CrossRefPubMedGoogle Scholar
  24. 24.
    J.-Y. Li, H.-Y. Cao, P. Liu, G.-H. Cheng, and M.-Y. Sun, BioMedRes. Int., 2014 (2014).Google Scholar
  25. 25.
    A. L. Harvey, Drug Discov. Today, 13, 894 (2008).CrossRefPubMedGoogle Scholar
  26. 26.
    K.-H. Lee, J. Nat. Prod., 73, 500 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    D. J. Newman and G. M. Cragg, J. Nat. Prod., 75, 311 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    H. C. Kolb and K. B. Sharpless, Drug Discov.Today, 8, 1128 (2003).CrossRefPubMedGoogle Scholar
  29. 29.
    J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 36, 1249 (2007).CrossRefPubMedGoogle Scholar
  30. 30.
    T. Mosmann, J. Immunol. Methods, 65, 55 (1983).CrossRefPubMedGoogle Scholar
  31. 31.
    K. Cheng, J. Liu, X. Liu, H. Li, H. Sun, and J. Xie, Carbohydr. Res., 344, 841 (2009).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jia-yan Huang
    • 1
  • Lin-dong Yang
    • 2
  • Chun-hua Su
    • 1
  • Xiang-wu Chu
    • 1
  • Jiang-yu Zhang
    • 1
  • Sheng-ping Deng
    • 1
  • Ke-guang Cheng
    • 1
  1. 1.School of Chemistry and Pharmacy of Guangxi Normal University, State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal ResourcesGuilinP. R. China
  2. 2.Department of Obstetrics and Gynecology, Nanjing Jinling HospitalNanjingP. R. China

Personalised recommendations