Chemistry of Natural Compounds

, Volume 53, Issue 3, pp 472–477 | Cite as

Biotransformation of Ginsenosides Re and Rg1 into Rg2 and Rh1 by Thermostable β-Glucosidase from Thermotoga thermarum

  • Jianjun Pei
  • Tao Wu
  • Tao Yao
  • Linguo ZhaoEmail author
  • Gang Ding
  • Zhenzhong Wang
  • Wei XiaoEmail author

The recombinant thermostable β-glucosidase from Thermotoga thermarum DSM 5069T exhibited high selectivity to catalyze the conversion of ginsenoside Re and Rg1 to the more pharmacologically active minor ginsenoside Rg2 and Rh1, respectively. At a concentration of 1.36 U/mL of the enzyme, a temperature of 85°C, and pH 5.5, 10 g/L ginsenoside Re was transformed into 8.02 g/L Rg2 within 60 min, and 2 g/L ginsenoside Rg1 was transformed into 1.56 g/L Rh1 within 60 min. This paper provides the first report on the production of ginsenoside Rg2 and Rh1 by a highly thermostable β-glucosidase.


biotransformation ginsenosides β-glucosidase Thermotoga thermarum 



This work was supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131423), the Open Fund of Jiangsu Key Laboratory of Biomass Based Green Fuels and Chemicals (JSBGFC12003), Postdoctoral Science Foundation of Jiangsu Province (1302022B), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    L. P. Christensen, Adv. Food Nutr. Res., 55, 1 (2008).CrossRefGoogle Scholar
  2. 2.
    B. S. Sun, L. J. Gu, Z. M. Fang, C. Y. Wang, Z. Wang, M. R. Lee, Z. Li, J. J. Li, and C. K. Sung, J. Pharm. Biomed. Anal., 50, 15 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    D. S. An, C. H. Cui, B. H. Sung, H. C. Yang, S. C. Kim, S. T. Lee, W. T. Im, and S. G. Kim, Appl. Microbiol. Biotechnol., 94, 673 (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    N. Li, B. Liu, D. E. Dluzen, and Y. Jin, J. Ethnopharmacol., 111, 458 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    S. R. Ko, K. J. Choi, K. Suzuki, and Y. Suzuki, Chem. Pharm. Bull., 51, 404 (2003).CrossRefPubMedGoogle Scholar
  6. 6.
    E. A. Bae, J. E. Shin, and D. H. Kim, Pharm. Bull., 28, 1903 (2005).CrossRefGoogle Scholar
  7. 7.
    L. H. Quan, J. W. Min, S. Sathiyamoorthy, D. U. Yang, Y. J. Kim, and D. C. Yang, Biotechnol. Lett., 34, 913 (2012).CrossRefPubMedGoogle Scholar
  8. 8.
    K. L. Pan, H. C. Hsiao, C. L. Weng, M. S. Wu, and C. P. Chou, J. Bacteriol., 185, 3020 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J. J. Pei, J. C. Xie, R. Yin, L. G. Zhao, G. Ding, Z. Z. Wang, and W. Xiao, J. Mol. Catal. B Enzym., 113, 104 (2015).CrossRefGoogle Scholar
  10. 10.
    L. N. Ten, S. M. Chae, and S. A. Yoo, Chem. Nat. Compd., 51, 81 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Yang, J. Y. Kim, S. O. Kim, Y. H. Yoo, and S. H. Sung, J. Ginseng Res., 38, 194 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    R. Teng, H. Li, J. Chen, D. Wang, Y. He, and C. Yang, Magn. Reson Chem., 40, 483 (2002).CrossRefGoogle Scholar
  13. 13.
    E. Windberger, R. Huber, A. Trincone, H. Fricke, and K. O. Stetter, Arch. Microbiol., 151, 506 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Chemical EngineeringNanjing Forestry UniversityNanjingP. R. China
  2. 2.Jiangsu Key Laboratory of Biomass Based Green Fuels and ChemicalsNanjingP. R. China
  3. 3.Jiangsu Kanion Pharmaceutical Co., Ltd.LianyungangP. R. China
  4. 4.State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical ProcessLianyungangP. R. China

Personalised recommendations