Skip to main content
Log in

Fatty Acid Composition of Seed Oils in Some Sand Dune Vegetation Species from Turkey

  • Published:
Chemistry of Natural Compounds Aims and scope

Six species from sand dunes of northwest Turkey were investigated for their total seed oil lipid and fatty acid (FA) profiles. The total oil content ranged from 4.26 to 33.64% (Plantago scabra and Glaucium flavum, respectively). The major FAs were linoleic, oleic, palmitic, and stearic acids (20.78–60.69%, 14.73–56.64, 5.42–15.13, and 1.65–3.67%, respectively). Considerable amounts of γ-linolenic acid were found in Plantago scabra and Cionura erecta (13.13 and 1.37%, respectively). The unsaturated FA content ranged from 83.09% in Cardaria draba to 87.80% in Eryngium maritimum. Significant correlations between FA concentrations in these species were evaluated. These species, as alternative sources of unsaturated FAs, should be evaluated as novel salt-tolerant crops and used for improving salt tolerance of existing oilseed crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Szabolcs, Salt-Affected Soils, Boca Raton, Fla. CRC Press, Florida USA, 1989, 348 pp.

    Google Scholar 

  2. A. Guvensen, G. Gork, and M. Ozturk, An Overview of the Halophytes in Turkey, in: Sabkha Ecosystems, A. Khan, B. Boer, G. S. Kust, and H. J. Barth, ed., Springer: West and Central Asia, 2006, Vol. II, p. 9.

  3. M. C. Morais, M. R. Panuccio, A. Muscolo, and H. Freitas, Environ. Exp. Bot., 82, 74 (2012).

    Article  CAS  Google Scholar 

  4. E. P. Glenn, J. J. Brown, and E. Blumwald, Crit. Rev. Plant. Sci., 18, 227 (1999).

    Article  Google Scholar 

  5. D. J. Weber, B. Gul, M. A. Khan, T. Williams, P. Wayman, and S. Warner, in: Proceeding of Shrubland Ecosystem Genetics and Biodiversity, E. D. Mc Arthur and D. J. Fairbanks (eds), RMRS-P-21. USDA Forest Service, Ogden, UT, Rocky Mountain Research Station, USA, 2001, p. 287

  6. T. Ozcan, Plant Syst. Evol., 274, 143 (2008).

    Article  Google Scholar 

  7. T. Ozcan, Nat. Prod. Res., 27, 54 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. N. I. Shevyakova, I. A. Netronina, E. E. Aronova, and V. I. V. Kuznetsov, Russ. J. Plant Physiol., 50, 678 (2003).

    Article  CAS  Google Scholar 

  9. T. J. Flowers, J. Exp. Bot., 55, 307 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. A. A. Jaradat, in: A. S. Alsharhan, W. W. Wood, A. S. Goudie, A. Fowler, and E. M. Abdullatif (eds.), Desertification in the Third Millennium, DOI: 10.1201/NOE9058095718.ch20, 2003, p.187.

  11. N. Murata and H. Wada, Biochem. J., 308, 1 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. D. J. Weber, R. Ansari, B. Gul, and M. Ajmal Khan, J. Arid Environ., 68, 315 (2006).

    Article  Google Scholar 

  13. D. J. Weber, B. Gul, and M. A. Khan, in: Tasks for Vegetation Science, R. Ahmad and K. A. Malik (ed.), Vol. 37, 2002, p. 333.

  14. H. Jiang and K. Gao, J. Phycol., 40, 651 (2004).

    Article  CAS  Google Scholar 

  15. M. A. Recks and G. T. Seaborn, Fish. Physiol. Biochem., 34, 275 (2007).

    Article  PubMed  Google Scholar 

  16. D. Chapman, Q. Rev. Biophys., 8, 185 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. J. L. Deferne and D. W. Pate, J. Int. Hemp. Assoc., 3, 4 (1996).

    Google Scholar 

  18. F. D. Gunstone, Prog. Lipid Res., 31, 145 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. K. D. Mukherjee, I. Kiewitt, and H. Hurka, Phytochemistry, 23, 117 (1984).

    Article  CAS  Google Scholar 

  20. A. Saffarzadeh, L. Vincze, and J. Csapo, Acta Agraria Kaposvariensis, 3, 59 (1999).

    Google Scholar 

  21. G. Van Ranst, V. Fievez, M. Vandewalle, J. De Riek, and E. Van Bockstaele, Grass Forag. Sci., 64, 196 (2009).

    Article  Google Scholar 

  22. J. H. Lee and K. M. Cho, Food Chem., 131, 161 (2012).

    Article  CAS  Google Scholar 

  23. Z. X. Mao, H. Fu, Z. B. Nan, J. Wang, and C. G. Wan, Biochem. Syst. Ecol., 44, 347 (2012).

    Article  CAS  Google Scholar 

  24. J. L. Guil-Guerrero, F. Gomez-Mercado, I. Rodriguez-Garcia, P. Campra-Madrid, and F. Garcia-Maroto, Phytochemistry, 58, 117 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. R. B. Ervin, J. D. Wright, C. Y. Wang, and J. Kennedy-Stephenson, Adv. Data, 8, 1 (2004).

    Google Scholar 

  26. IUPAC, Standard Methods for the Analysis of Oils, Fats and Derivatives. 6th Edition (Fifth Edition Method II. D. 19), Pergamon Press, Oxford, 1979, p. 96.

Download references

Acknowledgment

This work was supported by the Research Fund of Istanbul University. Project No. BYP-25165. All analyses in the present study were carried out in the accredited laboratory (DAR-DAP, ISO 17025) of the Food Institute of the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Ozcan.

Additional information

Published in Khimiya Prirodnykh Soedinenii, No. 5, September–October, 2014, pp. 699–703.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, T. Fatty Acid Composition of Seed Oils in Some Sand Dune Vegetation Species from Turkey. Chem Nat Compd 50, 804–809 (2014). https://doi.org/10.1007/s10600-014-1088-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-014-1088-4

Keywords

Navigation