Chemistry of Natural Compounds

, Volume 50, Issue 4, pp 633–637 | Cite as

Calendosides I–IV, New Quercetin and Isorhamnetin Rhamnoglucosides from Calendula officinalis

  • D. N. OlennikovEmail author
  • N. I. Kashchenko

Four new flavonoids that were identified using chemical transformations and UV, MS, PMR, and 13C NMR spectroscopy were isolated from flower heads of Calendula officinalis (Asteraceae). The compounds were quercetin 3-O-(4″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (calendoside I), quercetin 3-O-(3″-α-Lrhamnopyranosyl)-β-D-glucopyranoside (calendoside II), isorhamnetin 3-O-(4″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (calendoside III), and isorhamnetin 3-O-(3″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (calendoside IV).


Calendula officinalis Asteraceae calendosides I-IV antioxidant activity 



The work was supported financially by the SB RAS program “Centers of New Medical Technologies.”


  1. 1.
    D. N. Olennikov and N. I. Kashchenko, Chem. Nat. Compd., 49, 833 (2013).CrossRefGoogle Scholar
  2. 2.
    D. N. Olennikov and N. I. Kashchenko, Sci. World J., 2014, art. ID 654193 (2014).Google Scholar
  3. 3.
    N. F. Komissarenko, V. T. Chernobai, and A. I. Derkach, Chem. Nat. Compd., 24, 675 (1988); E. Vidal-Ollivier, R. Elias, F. Faure, A. Babadjamian, F. Crespin, G. Balansard, and G. Boudon, Planta Med., 55, 73 (1989).CrossRefGoogle Scholar
  4. 4.
    B. Abad-Garcia, S. Garmon-Lobato, L. A. Berrueta, B. Gallo, and F. Vicente, J. Mass Spectrom., 44, 1017 (2009).PubMedCrossRefGoogle Scholar
  5. 5.
    O. M. Andersen and K. R. Markham (eds.), Flavonoids. Chemistry, Biochemistry and Application, Taylor & Francis Group, Boca Raton, London, New York, 2006, pp. 824–855.Google Scholar
  6. 6.
    D. N. Olennikov and V. V. Partilkhaev, J. Planar Chromatogr.—Mod. TLC, 25, 30 (2012).CrossRefGoogle Scholar
  7. 7.
    K. Kojima, I. Saracoglu, M. Mutsuga, and Y. Ogihara, Chem. Pharm. Bull., 44, 2107 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    T. R. Seshadri and S. Vydeswaran, Phytochemistry, 11, 803 (1972).CrossRefGoogle Scholar
  9. 9.
    T. Miyase, A. Koizumi, A. Ueno, T. Noro, M. Kuroyanagi, S. Fukushima, Y. Akiyama, and T. Takemoto, Chem. Pharm. Bull., 30, 2732 (1982).CrossRefGoogle Scholar
  10. 10.
    T. Kanchanapoom, R. Kasai, and K. Yamasaki, Phytochemistry, 59, 557 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Kobayashi, H. Karasawa, T. Miyase, and S. Fukushima, Chem. Pharm. Bull., 33, 1452 (1985).CrossRefGoogle Scholar
  12. 12.
    K. A. Koo, S. H. Sung, J. H. Park, S. H. Kim, K. C. Lee, and Y. C. Kim, Planta Med., 71, 778 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Moalin, G. P. F. van Strijdonck, M. Beckers, G. J. Hagemen, P. J. Borm, A. Bast, and G. R. M. M. Haenen, Molecules, 16, 9636 (2011).PubMedCrossRefGoogle Scholar
  14. 14.
    D. N. Olennikov and A. V. Rokhin, Appl. Biochem. Microbiol., 49, 182 (2013).CrossRefGoogle Scholar
  15. 15.
    D. N. Olennikov, N. K. Chirikova, Z. M. Okhlopkova, and I. S. Zulfugarov, Molecules, 18, 14105 (2013).PubMedCrossRefGoogle Scholar
  16. 16.
    D. N. Olennikov, L. M. Tankhaeva, and S. V. Agafonova, Appl. Biochem. Microbiol., 47, 419 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of General and Experimental BiologySiberian Branch, Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations