Chemistry of Natural Compounds

, Volume 49, Issue 5, pp 932–933 | Cite as

Chemical Constituents of Cinnamomum iners

  • D. L. Espineli
  • E. M. G. Agoo
  • C.-C. Shen
  • C. Y. RagasaEmail author

Cinnamomum iners, a species closely similar to C. subcuneatum Miq., is an evergreen medium height tree with reddish brown and smooth branchlets.

Cinnamomum iners is widely distributed in Southeast Asia from Indochina, Sumatra, Pensular Malaysia, Java, and the Philippines [1].

Previous studies reported the presence of β-caryophyllene, stigmasterol, cardiac glycoside, flavonoid, polyphenol, saponin, sugar, tannin and terpenoid in the tree [2].

This study was conducted as part of our research on the chemical constituents of Cinnamomum species found in the Philippines. We earlier reported the isolation of a new monoterpene natural product and a new sesquiterpene, along with the known compounds 4-hydroxy-3-methoxycinnamaldehyde, 4-allyl-2-methoxyphenol, α-terpineol, and humulene from the bark of C. cebuense, while the leaves afforded humulene, β-caryophyllene, squalene, and a mixture of α-amyrin, β-amyrin, and bauerenol [3]. We also reported the presence of 1β,4β,7α-trihydroxyeudesmane,...


Petroleum Ether Squalene Eugenol Cinnamaldehyde Petroleum Ether Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W-K. Soh, Blumea, 56, 241 (2001).Google Scholar
  2. 2.
    F. Mustaffa, J. Indurkar, S. Ismail, M. Shah, and S. M. Mansor, Molecules, 16, 3037 (2011).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Y. Ragasa, D. L. Espineli, E. M. G. Agoo, and R. S. del Fierro, Chin. J. Nat. Med., 11, 264 (2013).PubMedGoogle Scholar
  4. 4.
    C. Y. Ragasa, D. L. Espineli, E. M. G. Agoo, and C.-C. Shen, Chem. Nat. Compd., 49, 127 (2013).CrossRefGoogle Scholar
  5. 5.
    R. K. Mukherjee, Y. Fujimoto, and K. Kakinuma, Phytochemistry, 37 (6), 1641 (1994).CrossRefGoogle Scholar
  6. 6.
    E. M. Guantai, K. Ncokazi, T. J. Egan, J. Gut, P. J. Rosenthal, R. Bhampidipati, A. Kopinathan, P. J. Smith, and K. Chibale, J. Med. Chem., 54, 3637 (2011).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Inouye, T. Takizawa, and H. Yamaguchi, J. Antimicrob. Chemother., 47, 565 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Kojima, N. Sato, A. Hatano, and H. Ogura, Phytochemistry, 29 (7), 2351 (1990).CrossRefGoogle Scholar
  9. 9.
    M. A. Alamsjah, S. Hirao, F. Ishibashi, T. Oda, and Y. Fujita, J. Appl. Phycol., 20, 713 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Bogdan, C. G. Floare, and A. Pirnau, J. Phys.: Conf. Ser., 182, 1 (2009).Google Scholar
  11. 11.
    Y.-L. Lin, J.-Y. Cheng, and Y.-H. Chu, Tetrahedron, 63, 10949 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. L. Espineli
    • 1
  • E. M. G. Agoo
    • 2
  • C.-C. Shen
    • 3
  • C. Y. Ragasa
    • 1
    Email author
  1. 1.Chemistry Department and Center for Natural Sciences and Ecological ResearchDe La Salle UniversityManilaPhilippines
  2. 2.Biology Department and Center for Natural Sciences and Ecological ResearchDe La Salle University-ManilaManilaPhilippines
  3. 3.National Research Institute of Chinese MedicineTaipeiTaiwan

Personalised recommendations