Chemistry of Natural Compounds

, Volume 49, Issue 2, pp 374–378 | Cite as

Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata

  • I. BlazevicEmail author
  • F. Burcul
  • M. Ruscic
  • J. Mastelic

Alyssoides utriculata (L.) Medik. (Brassicaceae) is the only species of its genus present in Croatian flora [1]. A. utriculata was separated from the great Alyssum genus, the plants of which were once used to cure hiccups and madness and for treating animal bites and rabies [2]. The most known compounds found in plants of the Brassicaceae family are glucosinolates (GLs) [3]. The diversity of the R group leads to a wide variation in the polarity and biological activity of these products. The nature and level of GLs vary greatly with plant variety and species, tissue type (seed, root, stem, leaf, flower), and the developmental stage of the tissue [4, 5]. Literature data on the chemistry of A. utriculata is scarce. The GL composition of the seed was reported by [6] among 297 species of wild plants and included in [3] revial paper as gluconapin, glucoerucin, glucoraphanin, and glucosinalbin.

GLs may break down in plant material during processing by the action of the endogenous enzyme...


Rabies Sulforaphane Methylsulfanyl AChE Inhibitory Activity CH2Cl2 Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Ministry of Science, Education and Sports, Republic of Croatia, project Grant 011-0982929-1329, and 011-2160547-1330, as well as Cogito project “Glucosinolates – novel sources and biological potential”.


  1. 1.
    M. Plazibat, Nat. Croat., 18 (2), 401 (2009).Google Scholar
  2. 2.
    S. Kovacic, T. Nikolic, M. Ruscic, M. Milovic, V. Stamenkovic, D. Mihelj, N. Jasprica, S. Bogdanovic, and J. Topic, Flora Jadranske Obale i Otoka, Skolska Knjiga d.d., Zagreb, 2008, p. 216.Google Scholar
  3. 3.
    J. W. Fahey, A. T. Zalcmann, and P. Talalay, Phytochemistry, 56 (1), 5 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Blazevic and J. Mastelic, Food Chem., 113 (1), 96 (2009).CrossRefGoogle Scholar
  5. 5.
    G. R. De Nicola, I. Blazevic, S. Montaut, P. Rollin, J. Mastelic, R. Iori, and A. Tatibouet, Chem. Biodivers., 8 (11), 2090 (2011).PubMedCrossRefGoogle Scholar
  6. 6.
    M. E. Daxenbichler, G. F. Spencer, D. G. Carlson, G. B. Rose, A. M. Brinker, and R. G. Powell, Phytochemistry, 30 (8), 2623 (1991).CrossRefGoogle Scholar
  7. 7.
    A. M. Bones and J. T. Rossiter, Phytochemistry, 67 (11), 1053 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Mastelic, I. Blazevic, and I. Kosalec, Chem. Biodivers., 7 (11), 2755 (2010).PubMedCrossRefGoogle Scholar
  9. 9.
    I. Blazevic and J. Mastelic, Flavour Frag. J., 23 (4), 278 (2008).CrossRefGoogle Scholar
  10. 10.
    I. Blazevic, A. Radonic, J. Mastelic, M. Zekic, M. Skocibusic, and A. Maravic, Food Chem., 121 (4), 1020 (2010).CrossRefGoogle Scholar
  11. 11.
    I. Blazevic, A. Radonic, J. Mastelic, M. Zekic, M. Skocibusic, and A. Maravic, Chem. Biodivers., 7 (8), 2023 (2010).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Radonic, I. Blazevic, J. Mastelic, M. Zekic, M. Skocibusic, and A. Maravic, Chem. Biodivers., 8 (6), 1170 (2011).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Barillari, D. Canistro, M. Paolini, F. Ferroni, G. F. Pedulli, R. Iori, and L. Valgimigli, J. Agric. Food Chem., 53 (7), 2475 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Brunelli, M. Tavecchio, C. Falcioni, R. Frapolli, E. Erba, R. Iori, P. Rollin, J. Barillari, C. Manzotti, P. Morazzoni, and M. D’incalci, Biochem. Pharmacol., 79 (8), 1141 (2010).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Boga, I. Hacibekiroglu, and U. Kolak, Pharm. Biol., 49 (3), 290 (2011).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Jin, M. Wang, R. T. Rosen, and C. T. Ho, J. Agric. Food Chem., 47 (8), 3121 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Jezek, B. G. D. Haggett, A. Atkinson, and D. M. Rawson, J. Agric. Food Chem., 47 (11), 4669 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, Biochem. Pharmacol., 7 (2), 88, IN1–IN2, 91 (1961).CrossRefGoogle Scholar
  19. 19.
    M. Jukic, F. Burcul, I. Carev, O. Politeo, and M. Milos, Nat. Prod. Res., 26, 1703 (2012).PubMedCrossRefGoogle Scholar
  20. 20.
    F. Elbarbry and N. Elrody, J. Med. Plants Res., 5 (4), 473 (2011).Google Scholar
  21. 21.
    M. Jang, E. Hong, and G.-H. Kim, J. Food Sci., 75 (7), M412 (2010).PubMedCrossRefGoogle Scholar
  22. 22.
    B. Chiu and P. Houghton, Investigation of Common Vegetables for Cholinesterase Inhibitory Activity, in: British Pharmaceutical Conference, 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. Blazevic
    • 1
    Email author
  • F. Burcul
    • 1
  • M. Ruscic
    • 2
  • J. Mastelic
    • 1
  1. 1.Faculty of Chemistry and TechnologyUniversity of SplitSplitCroatia
  2. 2.Faculty of Natural SciencesUniversity of SplitSplitCroatia

Personalised recommendations