Chemistry of Natural Compounds

, Volume 48, Issue 5, pp 737–741 | Cite as

Composition of lipids and biological activity of lipids and photosynthetic pigments from algae of the families Laminariaceae and Alariaceae

  • N. I. GerasimenkoEmail author
  • E. A. Martyyas
  • N. G. Busarova

The lipid compositions from four alga species of the family Laminariaceae and one species of the family Alariaceae in addition to the antimicrobial and hemolytic activity of the lipids and pigments from these algae were studied. Total lipids (TL) from the Laminariaceae algae, in contrast with those from the Alariaceae alga, were more active against microorganisms and exhibited greater hemolytic activity. Separate lipid classes and their fractions isolated from the less active Alariaceae alga suppressed the growth of microorganisms and caused hemolysis of erythrocytes. The lipid fatty acids affected the manifestation of biological activity.


laminaria alaria lipids glyceroglycolipids FA GC biological activity 


  1. 1.
    M. Honya, T. Kinoshita, M. Ishikawa, H. Mori, and K. Nisizawa, Bull. Jpn. Soc. Sci. Fish., 59, 295 (1993).CrossRefGoogle Scholar
  2. 2.
    M. Honya, T. Kinoshita, M. Ishikawa, H. Mori, and K. Nisizawa, J. Appl. Phycol., 6, 25 (1994).CrossRefGoogle Scholar
  3. 3.
    K. Arunkumar, N. Selvapalam, and R. Rengasamy, Bot. Mar., 48, 441 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Engel, M. P. Puglisi, P. R. Jensen, and W. Fenical, Mar. Biol., 149, 991 (2006).CrossRefGoogle Scholar
  5. 5.
    J. L. Morales, Z. O. Cantillo-Ciau, I. Sanchez-Molina, and G. J. Mena-Rejon, Pharm. Biol., 44, 632 (2006).CrossRefGoogle Scholar
  6. 6.
    M. P. Puglisi, S. Engel, P. R. Jensen, and W. Fenical, Mar. Biol., 150, 531 (2007).CrossRefGoogle Scholar
  7. 7.
    W. A. Stirk, D. L. Reinecke, and J. van Staden, J. Appl. Phycol., 19, 271 (2007).CrossRefGoogle Scholar
  8. 8.
    A. P. Desbois, T. Lebl, L. Yan, and V. J. Smith, Appl. Microbiol. Biotechnol., 81, 755 (2008).PubMedCrossRefGoogle Scholar
  9. 9.
    D. E. M. Saravanakumar, P. I. Folb, B. W. Campbell, and P. Smith, Pharm. Biol., 46, 254 (2008).CrossRefGoogle Scholar
  10. 10.
    C. Lategan, T. Kellerman, A. F. Afolayan, M. G. Mann, E. M. Antunes, P. J. Smith, J. J. Bolton, and D. R. Beukes, Pharm. Biol., 47, 408 (2009).CrossRefGoogle Scholar
  11. 11.
    Z. Kamenarska, J. Serkedjieva, H. Najdenski, K. Stefanov, I. Tsvetkova, S. Dimitrova-Konaklieva, and S. Popov, Bot. Mar., 52, 80 (2009).CrossRefGoogle Scholar
  12. 12.
    W. Fenical and C. C. Hughes, Chem. Eur. J., 16, 12512 (2010).PubMedCrossRefGoogle Scholar
  13. 13.
    V. S. Thibane, J. L. F. Kock, R. Ells, P. W. J. van Wyk, and C. H. Pohl, Mar. Drugs, 8, 2597 (2010).PubMedCrossRefGoogle Scholar
  14. 14.
    N. I. Gerasimenko, A. V. Skriptsova, N. G. Busarova, and O. P. Moiseenko, Fiziol. Rast., 58, 743 (2011).Google Scholar
  15. 15.
    J. P. Carreau and J. P. Dubacq, J. Chromatogr., 151, 384 (1978).CrossRefGoogle Scholar
  16. 16.
    N. I. Gerasimenko, E. L. Chaikina, N. G. Busarova, and M. M. Anisimov, Prikl. Biokhim. Mikrobiol., 46, 1 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. I. Gerasimenko
    • 1
    Email author
  • E. A. Martyyas
    • 1
  • N. G. Busarova
    • 1
  1. 1.Elyakov Pacific Institute of Bioorganic Chemistry, Far-East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations