Skip to main content
Log in

Melibiase in Immobilized Cells of Watermelon

  • Published:
Chemistry of Natural Compounds Aims and scope

Abstract

Cells of suspension culture Citrullus vulgaris cv. “Samara” were permeabilized by Tween 80 and immobilized by glutaraldehyde. The highest melibiase activity was at pH 5.4 and 60°C. The hydrolysis of substrate was linear for 3.5 h, reaching 65–70% conversion of the substrate. The cells, characterized by high enzyme activity and stability in long-term storage, showed convenient physico-mechanical properties (physical protection from shear forces and easy separation of product from biocatalysts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Brodelius, B. Deus, K. Mosbach, and M. H. Zenk, FEBS Lett., 103, 93 (1979).

    CAS  PubMed  Google Scholar 

  2. J. Klein and F. Wanner, Appl. Biochem. Bioeng., 4, 18 (1983).

    Google Scholar 

  3. A. J. Rosevear, J. Chem. Technol. Biotechnol., 34B, 127 (1984).

    CAS  Google Scholar 

  4. A. C. Hulst and J. Tramper, Enzyme Microbiol. Technol., 11, 546 (1989).

    Article  Google Scholar 

  5. M. Forster, Enzyme Microbiol. Technol., 16, 777 (1994).

    Article  Google Scholar 

  6. A. M. Klibanov, Science, 219, 722 (1983).

    CAS  Google Scholar 

  7. J. Tampion and M. D. Tampion, Immobilized Cells. Principles and Applications, Cambridge University Press, Cambridge (1987).

    Google Scholar 

  8. A. C. Hulst and J. Tramper, Enzyme Microbiol. Technol., 11, 546 (1989).

    Article  Google Scholar 

  9. J. M. S. Cabral, M. M. Cadete, J. M. Novais, and J. P. Cardoso, Ann. N.Y. Acad. Sci., 434, 483 (1984).

    CAS  Google Scholar 

  10. P. Parascandola and V. Scardi, O. Appl. Microbiol. Biotechnol., 26, 507 (1987).

    CAS  Google Scholar 

  11. P. Hasal, V. Vojtisek, A. Cejkova, P. Kleczek, and O. Kofronova, Enzyme Microbiol. Technol., 11, 546 (1992).

    Google Scholar 

  12. K. Y. A. Wu and K. D. Wisecarver, Biotechnol. Bioeng., 39, 447 (1992).

    CAS  Google Scholar 

  13. J. Stano, P. Nemec, K. Weissova, P. Kovacs, D. Kakoniova, and D. Liskova, Phytochemistry, 38, 859 (1995).

    CAS  Google Scholar 

  14. A. M. Kachurin, K. N. Neustroev, A. M. Golubev, and F. M. Ibatullin, Biokhimiya, 58, 550 (1993).

    CAS  Google Scholar 

  15. R. Kaneko, I. Kusakabe, Y. Sakai, and K. Murakami, Agric. Biol. Chem., 54, 237 (1990).

    CAS  Google Scholar 

  16. T. Furuya, T. Yoshikawa, and M. Taira, Phytochemistry, 23, 999 (1984).

    CAS  Google Scholar 

  17. R. Hamilton, H. Pedersen, and C. K. Chin, Biotechnol. Bioeng. Symp., 14, 383 (1984).

    CAS  Google Scholar 

  18. T. Sawicka and A. Kacperska, J. Plant Physiol., 145, 357 (1995).

    CAS  Google Scholar 

  19. J. Stano, P. Nemec, L. Bezakova, D. Kakoniova, P. Kovacs, K. Neubert, and D. Liskova, Acta Biochim. Pol., 45, 621 (1998).

    CAS  PubMed  Google Scholar 

  20. D. Budik, Diploma Thesis, Faculty of Pharmacy, Comenius University, Bratislava, 1992, 42 p.

  21. J. Stano, P. Nemec, D. Kakoniova, P. Kovacs, K. Neubert, and D. Liskova, Biologia, 50, 279 (1995).

    CAS  Google Scholar 

  22. P. Mucaji, D. Grancai, M. Nagy, S. Czigleova, M. Budesinsky, and K. Ubik, Czech. Slov. Pharm., 6, 274 (2001).

    Google Scholar 

  23. L. Bilisics, D. Liskova, M. Kubackova, O. Auxova, and D. Kakoniova, Biologia, 49, 911 (1994).

    CAS  Google Scholar 

  24. K. Fukase, T. Yasukochi, Y. Suda, M. Yosida, and S. Kusumoto, Tetrahedron Lett., 37, 6763 (1996).

    CAS  Google Scholar 

  25. E. Bedir, I. A. Khan, and L. A. Walker, Pharmazie, 57, 491 (2002).

    CAS  PubMed  Google Scholar 

  26. I. Mahmond, F. A. Moharram, M. S. A. Marzouk, M. W. Linsheid, and M. I. Saleh, Pharmazie, 57, 494 (2002).

    PubMed  Google Scholar 

  27. F. Devinsky, D. Mlynarcik, I. Lacko, and L. Krasnec, Pharmazie, 34, 574 (1979).

    CAS  PubMed  Google Scholar 

  28. T. Murashige and F. Skoog, Physiol. Plant., 15, 473 (1962).

    CAS  Google Scholar 

  29. C. L. Brown and R. H. Lawrence, Forest. Science, 14, 62 (1968).

    Google Scholar 

  30. P. Trinder, Ann. Clin. Biochem., 6, 24 (1969).

    CAS  Google Scholar 

  31. W. D. Kim, O. Kobayashi, S. Kaneko, Y. Sakakibara, G. G. Park, I. Kusakabe, H. Tanaka, and H. Kobayashi, Phytochemistry, 61, 621 (2002).

    CAS  PubMed  Google Scholar 

  32. M. M. Bradford, Anal. Biochem., 72, 248 (1976).

    CAS  PubMed  Google Scholar 

  33. R. A. Dixon, Plant cell culture.-A practical Approach. IRL Press, Oxford, Washington DC, (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 53–55, January–February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stano, J., Tokhtaeva, E., Micieta, K. et al. Melibiase in Immobilized Cells of Watermelon. Chem Nat Compd 41, 65–68 (2005). https://doi.org/10.1007/s10600-005-0076-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-005-0076-0

Key words

Navigation