Skip to main content
Log in

Description of the non-Markovian dynamics of atoms in terms of a pure state

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Abstract

The quantum master equation (QME), used to describe the Markov process of interaction between atoms and field, has a number of significant drawbacks. It is extremely memory intensive, and also inapplicable to the case of long-term memory in the environment. An iterative algorithm for modeling the dynamics of an atomic system in the extended Tavis–Cummings model in terms of a pure state is proposed. The correctness of this algorithm is shown on the example of the interaction of an atomic system with the environment through the exchange of photons with the preservation of coherence. This algorithm is applicable to a wide class of processes associated with photonic machinery, in particular, to chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fassioli, F., Park, K.H., Bard, S.E., Scholes, G.D.: Femtosecond photophysics of molecular Polaritons. J. Phys. Chem. Lett. 12(46), 11444 (2021). https://doi.org/10.48550/arXiv.2302.05670

    Article  CAS  PubMed  Google Scholar 

  2. Fan, L.-B., Shu, C.-C., Dong, D., He, J., Henriksen, N.E., Nori, F.: Quantum coherent control of a single molecular-polariton rotation. Phys. Rev. Lett. (2022). https://doi.org/10.48550/arXiv.2212.11649

    Article  PubMed  Google Scholar 

  3. Fischer, E.W., Anders, J., Saalfrank, P.: Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry. J Chem Phys 156, 154305 (2022). https://doi.org/10.48550/arXiv.2109.13574

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wellnitz, D., Pupillo, G., Schachenmayer, J.: Disorder enhanced vibrational entanglement and dynamics in polaritonic chemistry. Commun Phys 5, 120 (2022). https://doi.org/10.48550/arXiv.2107.06053

    Article  CAS  Google Scholar 

  5. Herrera, F., Spano, F.C.: Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116, 238301 (2016)

    Article  ADS  PubMed  Google Scholar 

  6. Cwik, J.A., Reja, S., Littlewood, P.B., Keeling, J.: Polariton condensation with saturable molecules dressed by vibrational modes. EPL 105, 47009 (2014)

    Article  ADS  Google Scholar 

  7. Herrera, F., Spano, F.C.: Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states. ACS Photonics 5, 65 (2018)

    Article  CAS  Google Scholar 

  8. Breuer, H., Petruccione, F.: The theory of open quantum systems. Oxford (2002)

    Google Scholar 

  9. Ozhigov, Y.I., Kulagin, A.V., Afanasiev, V.Y., Keli, Z., Vanshun, L., Huihui, M., Victorova, N.B.: About chemical modifications of finite dimensional QEDmodels. Nonlinear Phenom. Complex Syst. 24(3), 230–241. https://doi.org/10.33581/1561-4085-2021-24-3-230-241

  10. Ozhigov, Y.: Quantum computer (2020). https://doi.org/10.29003/m1377.978-5-317-06403-7. Rus

    Book  Google Scholar 

  11. Andre, A., Duan, L.M., Lukin, M.D.: Coherent atom interactions mediated by dark-state polaritons. Phys. Rev. Lett. 88(24) (2002)

  12. Hansom, J., Schulte, C., Le Gall, C., Matthiesen, C., Clarke, E., Hugues, M., Taylor, J.M., Atatüre, M.: Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys 10, 725–730 (2014)

    Article  ADS  CAS  Google Scholar 

  13. Lee, E.S., Geckeler, C., Heurich, J., Gupta, A., Kit-Iu, C., Secrest, S., Meystre, P.: Dark states of dressed Bose-Einstein condensates. Phys. Rev. A. 60, 4006 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Ferretti, M., Hendrikx, R., Romero, E., Southall, J., Cogdell, R.J., Novoderezhkin, V.I., Scholes, G.D., van Grondelle, R.: Dark states in the light-harvesting complex 2 revealed by two-dimensional electronic spectroscopy. Sci Rep (2016). https://doi.org/10.1038/srep20834

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pöltl, C., Emary, C., Brandes, T.: Spin entangled two-particle dark state in quantum transport through coupled quantum dots. Phys. Rev. B 87, 045416 (2013)

  16. Tanamoto, T., Ono, K., Nori, F.: Steady-state solution for dark states using a three-level system in coupled quantum dots. Jpn. J. Appl. Phys. Part 1(51), 02BJ07 (2012)

  17. Rose, H., Popolitova, D.V., Tikhonova, O.V., Meier, T., Sharapova, P.R.: Dark-state and loss-induced phenomena in the quantum-optical regime of Lambda-type three-level systems. Phys. Rev. A. 103, 13702 (2021)

    Article  ADS  CAS  Google Scholar 

  18. Ozhigov, Y.I.: About the dimensionality of the dark subspace in Tavis-Cummings model [in Russian]. Math. Zametki, Mian (Moscow) 111(3), 433–442 (2022)

    Article  Google Scholar 

  19. Ozhigov, Y.I.: Space of dark states in Tavis-Cummings model [in Russian]. Mod. Inf. Technol. IT-education (Moscow) 15(1), 13–26 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Ozhigov.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 73, 2023, pp. 99–111.

This article is a translation of the original article published in Russian in the journal Prikladnaya Matematika i Informatika. The translation was done with the help of an artificial intelligence machine translation tool, and subsequently reviewed and revised by an expert with knowledge of the field. Springer Nature works continuously to further the development of tools for the production of journals, books and on the related technologies to support the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozhigov, Y., Jiangchuan, Y. Description of the non-Markovian dynamics of atoms in terms of a pure state. Comput Math Model (2024). https://doi.org/10.1007/s10598-024-09596-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10598-024-09596-7

Keywords

Navigation