Skip to main content
Log in

Solution of 2D State Space Continuous-Time Conformable Fractional Linear System Using Laplace and Sumudu Transform

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The present research paper deals with the effectiveness of the solvability of two dimensional (2D) models. This study explores the new fractional derivatives and extended transforms for a class of bidimensional models. A 2D Sumudu and 2D Laplace transforms are used to establish the solution of the continuous Fornasini-Marchesini models by the use of the conformable derivatives. A new definition and properties of Sumudu in two dimensional case are given. Finally, an illustrative example is given to show the accuracy and applicability of the developed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Idczak, R. Kamocki, and M. Majewski, “On a fractional continuous counterpart of Fornasini–Marchesini model nDS 13,” in: Proceedings of the 8th International Workshop on Multidimensional Systems, Erlangen (2013), pp. 1–5.

  2. F. B. M. Belgacem, A. A. Karaballi, and S. L. Kalla, “Analytical investigations of the sumudu transform and applications to integral production equations,” Mathematical Problems in Engineering, 3, 103–118 (2003).

    Article  MathSciNet  Google Scholar 

  3. F. Cacace, L. Farina, R. Setola, and A. Germani, Positive Systems, Theory and Applications, Springer International Publishing, Switzerland (2017).

  4. K. Galkowski, State-Space Realizations of Linear 2-D Systems with Extensions to the General nD case, Springer-Verlag, London (2001).

    MATH  Google Scholar 

  5. H. Eltayeb, I. Bachar, and A. KılıçmanOn, “Conformable Double Laplace Transform and One Dimensional Fractional Coupled Burgers Equation,” Symmetry., 11, No. 3, 417 (2019).

  6. J. E Kurek, “The general state-space model for a two-dimensional linear digital system,” IEEE Trans. Autom. Control, 30, No. 2, 600–602 (1985).

    Article  MathSciNet  Google Scholar 

  7. K. Rogowski, “Solution to the Fractional-Order 2D Continuous Systems Described by the Second Fornasini-Marchesini Model,” IFAC Papers OnLine, 50, No. 1, 9748–9752 (2017).

  8. K. Rogowski, “General Response Formula for Fractional 2D Continuous-Time Linear Systems Described by the Roesser Model,” Acta Mechanica et Automatica, 5, No. 2, 112–116 (2011).

  9. J. M. Lazo and F. M. Torres, “Variational Calculus with Conformable Fractional Derivatives,” IEEE/CAA J. Automatica Sinica, 4, No. 2, 340–352 (2017).

    Article  MathSciNet  Google Scholar 

  10. O. Ozkan and A. Kurt, “On conformable double Laplace transform,” Opt Quant Electron., 50, 103 (2018).

    Article  Google Scholar 

  11. O. Ozkan and A. Kurt, “Conformable fractional double Laplace transform and its applications to fractional partial integro-differential equations,” J. Fractional Calculus and Applications, 11, No. 1, 70–81 (2020).

    MathSciNet  Google Scholar 

  12. R. Khalil, M. Al Horani, A. Yousef a, and M. Sababhehb, “A new definition of fractional derivative,” J. Computational and Applied Mathematics, 265, 65–70 (2014).

  13. T. Abdeljawad, “On conformable fractional calculus,” J. Computational and Applied Mathematics, 279, 57–66 (2015).

    Article  MathSciNet  Google Scholar 

  14. T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin (2011).

    Book  Google Scholar 

  15. T. Kaczorek, Positive 1 D and 2D Systems, Springer-Verlag, London (2002).

    Book  Google Scholar 

  16. T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer International Publishing, Switzerland (2015).

    Book  Google Scholar 

  17. Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi and R. Alkhasawneh, “New results on the conformable fractional sumudu transform:theories and applications.”, International J. Analysis and Applications, 17, No 6, 1019–1033 (2019).

  18. S. Abbas, M. Banerjee, and S. Momani, “Dynamical analysis of fractional-order modified logistic model,” Comput. Math. Appl., 62, 1098–1104 (2011).

    Article  MathSciNet  Google Scholar 

  19. A. A. M. Arafa, S. Z. Rida, and M. Khalil, “The effect of anti-viral drug treatment of human immunodeficiencey virus type 1 (HIV-1) described by a fractional order model,” Appl. Math. Model., 37, 2189–2196, (2013).

    Article  MathSciNet  Google Scholar 

  20. M. El-Shahed and A. Salem, “On the generalized Navier-stokes equations,” Appl. Math. Comput., 156, 287–293 (2004).

    MathSciNet  MATH  Google Scholar 

  21. M. S. Hashemi, “Invariant subspaces admitted by fractional differential equations with conformable derivatives,” Chaos Solutions Fractal., 107, 161–169 (2018).

    Article  MathSciNet  Google Scholar 

  22. M. S. Hashemi, “Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative,” Opt. Quant. Electron., 107, 50–79 (2018).

    Google Scholar 

  23. G. G. Parra, A. J. Arenas, and B.M. Chen-Charpentier, “A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1),” Math. Method. Appl. Sci., 37, 2218–2226 (2014).

    Article  MathSciNet  Google Scholar 

  24. H. H. Sherief and A.M. Abd El-Latief, “Application of fractional order theory of thermo elasticity to a 2D problem for a half-space,” Appl. Math. Comput., 248, 584–592 (2014).

    MathSciNet  MATH  Google Scholar 

  25. V. E. Tarasov, “Fractional statistical mechanics,” Chaos, 16, No. 3, 033108 (2006).

  26. Y. Yan, and C. Kou, “Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay,” Math. Comput. Simulat., 82, 1572–1585 (2012).

    Article  MathSciNet  Google Scholar 

  27. T. M. Atanackovic, and B. Stankovic, “An expansion formula for fractional derivatives and its application,” Fract. Calc. Appl. Anal., 7, 365–378 (2004).

    MathSciNet  MATH  Google Scholar 

  28. V. D. Djordjevic, J. Jaric, B. Fabry, J.J. Fredberg, and D. Stamenovi, “Fractional derivatives embody essential features of cell rheological behavior,” Ann. Biomed. Eng., 31, 692–699 (2003).

    Article  Google Scholar 

  29. C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle, Fractional-oder systems and controls. Fundamentals and Applications, Springer, London (2010).

    Book  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Benyettou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyettou, K., Bouagada, D. & Ghezzar, M.A. Solution of 2D State Space Continuous-Time Conformable Fractional Linear System Using Laplace and Sumudu Transform. Comput Math Model 32, 94–109 (2021). https://doi.org/10.1007/s10598-021-09519-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09519-w

Keywords

Navigation