Skip to main content
Log in

Scattering Morphology Resolved Total Internal Reflection Microscopy (SMR-TIRM) Of Colloidal Spheres

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Nanometer to micrometer scale colloidal particles are regularly found in applications in which surface forces dominate behavior. Consequently, a wide range of surface force measurement tools have been developed to probe interactions as a function of physiochemical properties. One tool, Total Internal Reflection Microscopy (TIRM), is an exceptionally sensitive probe of both conservative and non-conservative surface forces. A recent variant of TIRM called Scattering Morphology Resolved (SMR) TIRM utilizes the morphology of scattered light in concert with the integrated intensity to measure the position and orientation of a colloidal particle. Although the target of SMR-TIRM is the field of non-spherical “anisotropic” particles, spherical particles have been found to scatter evanescent waves with surprising morphology. Herein, we present experiments and simulations of the scattering morphology of a spherical particle. The morphology was probed as a function of particle size, incident beam polarization, and particle separation distance. We found that spherical particles scattered light with a noncircular morphology. Moreover, we found the morphology depended upon both the scaled particle size with respect to the incident beam wavelength and the incident beam polarization. Although the scattering morphology from the sphere was surprisingly complex, we did not find that these effects would alter the interpretation of scattering as a function of particle separation distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Berg, An Introduction to Interfaces and Colloids, 1st ed., World Scientific (2009).

  2. L. Kavanagh and P. Lant, “Introduction to chemical product design,” Educ. Chem. Eng., 1, 66 (2006).

    Article  Google Scholar 

  3. P. M. Claesson, T. Ederth, V. Bergeron, and M. W. Rutland, “Techniques for measuring surface forces,” Adv. Colloid Interface Sci., 67, 119 (1996).

    Article  Google Scholar 

  4. Y. Wang, G. A. Pilkington, C. Dhong, and J. Frechette, “Elastic deformation during dynamic force measurements in viscous fluids,” Curr. Opin. Colloid Interface Sci., 27, 43 (2017).

    Article  Google Scholar 

  5. J. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika, K. Rosenberg, and H. Zeng, “Recent advances in the surface forces apparatus (SFA) technique,” Reports Prog. Phys., 73, 036601 (2010).

    Article  Google Scholar 

  6. D. C. Prieve, “Measurement of colloidal forces with TIRM,” Adv. Colloid Interface Sci., 82, 93 (1999).

    Article  Google Scholar 

  7. M. A. Bevan and S. L. Eichmann, “Optical microscopy measurements of KT-scale colloidal interactions,” Curr. Opin. Colloid Interface Sci., 16, 149 (2011).

    Article  Google Scholar 

  8. D. S. Sholl, M. K. Fenwick, E. Atman, and D. C. Prieve, Brownian dynamics simulation of the motion of a rigid sphere in a viscous fluid very near a wall,” J. Chem. Phys., 113, 9268 (2000).

    Article  Google Scholar 

  9. D. C. Prieve and N. A. Frej, “Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces,” Langmuir, 6, 396 (1990).

    Article  Google Scholar 

  10. D. C. Prieve and J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt., 32, 1629 (1993).

    Article  Google Scholar 

  11. R. M. Rock, P. J. Sides, and D. C. Prieve, “Ensemble average TIRM for imaging amperometry,” J. Colloid Interface Sci., 403, 142 (2013).

    Article  Google Scholar 

  12. T. D. Edwards and M. A. Bevan, “Depletion-mediated potentials and phase behavior for micelles, macromolecules, nanoparticles, and hydrogel particles,” Langmuir, 28, 13816 (2012).

    Article  Google Scholar 

  13. S. Biggs, R. R. Dagastine, and D. C. Prieve, “Oscillatory packing and depletion of polyelectrolyte molecules at an oxide — water interface,” J. Phys. Chem. B, 106, 11557 (2002).

    Article  Google Scholar 

  14. X. Gong, Z. Wang, and T. Ngai, “Direct measurements of particle–surface interactions in aqueous solutions with total internal reflection microscopy,” Chem. Commun., 50, 6556 (2014).

    Article  Google Scholar 

  15. C. L. Wirth, P. J. Sides, and D. C. Prieve, “The imaging ammeter,” J. Colloid Interface Sci., 357, 1 (2011).

    Article  Google Scholar 

  16. J. A. Fagan, P. J. Sides, and D. C. Prieve, “Vertical oscillatory motion of a single colloidal particle adjacent to an electrode in an ac electric field,” Langmuir, 18, 7810 (2002).

    Article  Google Scholar 

  17. S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater., 6, 557 (2007).

    Article  Google Scholar 

  18. A. Rashidi, S. Domínguez-Medina, J. Yan, D. S. Efremenko, A. A. Vasilyeva, A. Doicu, T. Wriedt, and C. L. Wirth, “Developing scattering morphology resolved total internal reflection microscopy (SMR-TIRM) for orientation detection of colloidal ellipsoids,” Langmuir, 36, 13041 (2020).

    Article  Google Scholar 

  19. A. Doicu, A. A. Vasilyeva, D. S. Efremenko, C. L. Wirth, and T. Wriedt, “A light scattering model for total internal reflection microscopy of geometrically anisotropic particles,” J. Mod. Opt., 66, 1139 (2019).

    Article  MathSciNet  Google Scholar 

  20. A. Rashidi and C. L. Wirth, “Motion of a janus particle very near a wall,” J. Chem. Phys., 147, 224906 (2017).

    Article  Google Scholar 

  21. A. Xia, S. Yang, R. Zhang, L. Ni, X. Xing, and F. Jin, “Imaging the separation distance between the attached bacterial cells and the surface with a total internal reflection dark-field microscope,” Langmuir, 35, 8860 (2019).

    Article  Google Scholar 

  22. G. C. L. Wong, J. D. Antani, P. Lele, J. Chen, B. Nan, M. J. Kühn, A. Persat, J.-L. Bru, N. M. Høyland-Kroghsbo, A. Siryaporn, J. Conrad, F. Carrara, Y. Yawata, R. Stocker, Y. Brun, G. Whitfield, C. Lee, J. de Anda, W. C. Schmidt, R. Golestanian, G. A. O’Toole, K. Floyd, F. Yildiz, S. Yang, F. Jin, M. Toyofuku, L. Eberl, N. Nobuhiko, L. Zacharoff, M. Y. El-Naggar, S. E. Yalcin, N. Malvankar, M. D. Rojas-Andrade, A. Hochbaum, J. Yan, H. A. Stone, N. S. Wingreen, B. Bassler, Y. Wu, H. Xu, K. Drescher, and J. Dunkel, “Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation,” Phys. Biol. (2021).

  23. T. Wriedt, “Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact., 19, 256 (2002).

    Article  Google Scholar 

  24. N. Riefler, E. Eremina, C. Hertlein, L. Helden, Y. Eremin, T. Wriedt, and C. Bechinger, “Comparison of T-matrix method with discrete sources method applied for total internal reflection microscopy,” J. Quant. Spectrosc. Radiat. Transf., 106, 464 (2007).

    Article  Google Scholar 

  25. G. Gouesbet and J. a Lock, “Journal of quantitative spectroscopy & radiative transfer on the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles : a review,” J. Quant. Spectrosc. Radiat. Transf., 162, 1 (2014).

  26. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles, Null-Field Method with Discrete Sources (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wirth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Efremenko, D.S., Vasilyeva, A.A. et al. Scattering Morphology Resolved Total Internal Reflection Microscopy (SMR-TIRM) Of Colloidal Spheres. Comput Math Model 32, 86–93 (2021). https://doi.org/10.1007/s10598-021-09518-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09518-x

Navigation