Skip to main content
Log in

Discrete Sources Method for Investigation of the Influence of Geometry Asymmetry of Core-Shell Particles Accounting For Spatial Dispersion

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

In this paper, the Discrete Sources Method has been extended to describe the influence of the geometry asymmetry of a core-shell particle accounting for the effect of spatial dispersion inside the plasmonic metal shell. We found that varying the plasmonic shell thickness has more influence on the near field intensity distribution then on the average enhancement factor. Besides, we demonstrates that the effect of spatial dispersion can decrease the near field intensity up to 60% of its value and it provides a small blue shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-P. Feng, L. Tang, G.-M. Zeng, Y. Zhou, Y.-C. Deng, X. Ren, B. Song, C. Liang, M.-Y.Wei, and J.-F. Yu, “Core-shell nanomaterials: Applications in energy storage and conversion,” Advances Colloid and Interface Science, 267, 26–46 (2019).

    Google Scholar 

  2. P. K. Kalambate, Dhanjai, Z. Huang Z, Y. Li, Y. Shen, M. Xie, Y. Huang, and A. K. Srivastava, “Corell shell nanomaterials based sensing devices: A review,” Trends Analytical Chem., 115, 147–161 (2019).

    Article  Google Scholar 

  3. S. Rajkumar, and M. Prabaharan, “Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy,” Colloids and Surfaces B: Biointerfaces, 174, 252–259 (2019).

    Article  Google Scholar 

  4. M. Premaratne and M. Stockman, “Theory and technology of SPASERs. Review,” Advances Optics and Photonics, 9, 79–128 (2017).

    Article  Google Scholar 

  5. D. Xu, X. Xiong, L. Wu, et al, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Advances Optics and Photonics, 10, No. 4, 703–56 (2018).

    Article  Google Scholar 

  6. M. I. Stockman, et al, “Roadmap on plasmonics,” J. Optics, 20, 043001 (2018).

    Article  Google Scholar 

  7. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures,” Topical Review, J. Phys. Condens. Matter, 27, 183204 (2015).

    Article  Google Scholar 

  8. F. J. Garcıa de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C, 112, 17983–17987 (2008).

    Article  Google Scholar 

  9. C. Ciraci, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys., Chem., 14, 1109–1116 (2013).

    Article  Google Scholar 

  10. A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: Size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics, 11, 941–951 (2016).

    Article  Google Scholar 

  11. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nature Commun., 5, 3809–3815 (2014).

    Article  Google Scholar 

  12. F. Cacciola, M. A. Iatì, R, Saija, et al, “Spectral shift between the near-field and far-field optoplasmonic response in gold nanospheres, nanoshells, homo-and hetero-dimers,” J. Quantit. Spectr. Radiat. Transfer, 195, 97–106 (2017).

    Article  Google Scholar 

  13. M. Wubs and N. A. Mortensen, “Nonlocal response in plasmonic nanostructures,” in: Bozhevolnyi S. I., Martin-Moreno L., Garcia-Vidal F., editors, Quantum Plasmonics, Springer, Switzerland (2017), pp. 279–302.

    Chapter  Google Scholar 

  14. V. I. Balykin, “Plasmon nanolaser: current state and prospects,” Physics Uspekhi, 61, No. 9, 846–70 (2018).

    Article  Google Scholar 

  15. P. Gu, D. J. S. Birch, and Y. Chen, “Dye-doped polystyrene-coated gold nanorods: towards wavelength tuneable SPASER,” Methods Appl. Fluoresc., 2, 024004 (2014).

    Article  Google Scholar 

  16. M. H. Motavas and A. Zarifkar, “Low threshold nanorod-based plasmonic nanolasers with optimized cavity length,” Opt. Laser Technology, 111, 315–322 (2019).

    Article  Google Scholar 

  17. E. Eremina, Y. Eremin, and T. Wriedt, “Computational nano-optic technology based on discrete sources method (review),” J. Modern Opt., 58, No. 5-6, 384–399 (2011).

    Article  Google Scholar 

  18. A. Vinokurov, V. Farafonov, and V. Il’in, “Separation of variables method for multilayered nonspherical particles,” J. Quantit. Spectr. Radiat. Transfer, 110, 1356–1368 (2009).

    Article  Google Scholar 

  19. A. Doicu, Yu. Eremin, and T. Wriedt, “Transition matrix of a nonspherical layered particle in the non-local optical response theory,” J. Quantit. Spectr. Radiat. Transfer, 254, 107196 (2020).

    Article  Google Scholar 

  20. Yu. A. Eremin, L. Mädler, and T. Wriedt, “Influence of the nonlocal effect on the optical properties of nonspherical plasmonic semiconductor nanoparticles,” Computational Mathematics and Modeling, 31, No. 1, 58–74 (2020).

    Article  MathSciNet  Google Scholar 

  21. N. S. Bahvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations, Mir (1977).

  22. V. A. Morozov, Regularization Methods for Ill Posed Problems, Springer (1984).

  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, 6, 4370–4379 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wriedt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y., Doicu, A. & Wriedt, T. Discrete Sources Method for Investigation of the Influence of Geometry Asymmetry of Core-Shell Particles Accounting For Spatial Dispersion. Comput Math Model 31, 453–463 (2020). https://doi.org/10.1007/s10598-021-09506-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09506-1

Keywords

Navigation