Skip to main content
Log in

A Model Describing the Propagation of a Femtosecond Pulse in a Kerr Nonlinear Medium

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

We consider a model of nonlinear interaction of femtosecond pulses with a Kerr nonlinear medium, allowing for first and second order dispersion, nonlinear response dispersion, and mixed time and space derivatives. The invariants are constructed by a transformation of the generalized nonlinear Schrodinger equation that involves changing to new functions and reduces the original equation to a form without the nonlinear response derivatives and the mixed derivatives. Appropriate conservation laws are established for the transformed equation. The invariants derived in this article lead to conservative difference schemes and allow control of computer simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kozlov and V. V. Samartsev, Foundations of Femtosecond Optics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  2. D. Hovhannisyan and S. Manucharyan, “Modeling of energy redistribution process in a spectrum of laser pulse of a few optical cycles propagating in a fused silica, Mic. and Op. Tech. Let., 47(4), 359–365 (2005).

    Article  Google Scholar 

  3. C. V. Hile and W. L. Kath, “Numerical solutions of Maxwell's equations for nonlinear-optical pulse propagation,” J. Opt. Soc. Am. B, 13, 1135–1145 (1996).

    Article  Google Scholar 

  4. U. S. Inan and R. A. Marshall, Numerical Electromagnetics. The FDTD Method, Cambrige University Press (2011).

  5. S. A. Akhmanov and R. V. Khokhlov, Issues in Nonlinear Optics [in Russian], VINITI, Moscow (1964).

    Google Scholar 

  6. N. Blombergen, Nonlinear Optics [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  7. N. Tzoar and M. Jain, “Self-phase modulation in long-geometry optical waveguides,” Phys. Rev. A, 23(3), 1266–1270 (1981).

    Article  Google Scholar 

  8. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett., 78(17), 3282–3285 (1997).

    Article  Google Scholar 

  9. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys, 72(2), 545–591 (2000).

    Article  Google Scholar 

  10. P. Kinsler and G. H. C. New, “Few-cycle pulse propagation, Phys. Rev. A, 67, 023813 (2003).

    Article  Google Scholar 

  11. N. Akozbek, M. Scalora, C. Bowden, and S. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Comm., 191, 353–362 (2001).

    Article  Google Scholar 

  12. S. Trushin, K. Kosma et al., “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett., 32(16), 2432–2434 (2007).

    Article  Google Scholar 

  13. A. Couairon and A. Mysyrowicz, Self-focusing and Filamentation of Femtosecond Pulses in Air and Condensed Matter: Simulations and Experiments, Springer, New York (2009), pp. 297–322.

    Google Scholar 

  14. S. Jiménez, “Derivation of the discrete conservation laws for a family of finite difference schemes,” Appl. Math and Comp., 64, 13–45 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Kim, Park Q-Han, and H. J. Shin, “Conservation laws in higher-order nonlinear Schrödinger equations,” Phys. Rev. E, 58(5), 6746–6751 (1998).

    Article  MathSciNet  Google Scholar 

  16. A. Biswas and A. Kara, “1-Soliton solution and conservation laws for nonlinear wave equation in semiconductors,” Appl. Math. and Comp., 217, 4289–4292 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Brugnano, G. Caccia, and F. Iavernaro, “Energy conservation issues in the numerical solution of the semilinear wave equation,” Appl. Math. and Comp., 270, 842–870 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu. N. Karamzin, A. P. Sukhorukov, and V. A. Trofimov, Mathematical Modeling in Nonlinear Optics [in Russian], Izd. MGU, Moscow (1989).

    MATH  Google Scholar 

  19. V. A. Trofimov, “Invariants of nonlinear propagation of femtosecond pulses,” Radiophysics and Quantum Electronics, 35(6–7), 339–401 (1992).

    Google Scholar 

  20. V. A. Trofimov, “On new approach to modeling the nonlinear propagation of ultrashort laser pulses,” Comp. Math. and Math. Phys., 38(5), 805–809 (1998).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stepanenko.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 60, 2019, pp. 51–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanenko, S.V., Razgulin, A.V. & Trofimov, V.A. A Model Describing the Propagation of a Femtosecond Pulse in a Kerr Nonlinear Medium. Comput Math Model 30, 230–238 (2019). https://doi.org/10.1007/s10598-019-09450-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-019-09450-1

Keywords

Navigation