Computational Mathematics and Modeling

, Volume 30, Issue 1, pp 48–54 | Cite as

On Symmetries of Tensor Decompositions for the Commutator of 2 × 2 Matrices

  • V. V. LysikovEmail author
  • B. V. Chokaev

We consider symmetries of tensor decompositions related to an algorithm for computing the commutator of 2 × 2 matrices using 5 multiplications.


bilinear algorithms tensors polyadic decompositions symmetries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bürgisser, M. Clausen, and M. A. Shokroollahi, Algebraic Complexity Theory, Springer, Berlin (1997).Google Scholar
  2. 2.
    De H. F. Groote, “On varieties of optimal algorithms for the computation of bilinear mappings I,” Theoretical Computer Science, 7, Iss. 1, 1–24 (1978).MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Harris, Algebraic Geometry: A First Course, Springer, New York (1992).zbMATHGoogle Scholar
  4. 4.
    J. A. Grochow and C. Moore, Matrix Multiplication Algorithms from Group Orbits, Arxiv preprint 1612.01527 (2016).Google Scholar
  5. 5.
    J. M. Landsberg, Geometry and Complexity Theory, Cambridge University Press, Cambridge (2017).zbMATHGoogle Scholar
  6. 6.
    R. Mirwald, “The Algorithmic Structure of sl(2,k),” Proceedings of the 3rd International Conference on Algebraic Algorithms and Error-Correcting Codes, Springer, Berlin (1986).zbMATHGoogle Scholar
  7. 7.
    V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, 5, Iss. 4, 354–356 (1969).MathSciNetzbMATHGoogle Scholar
  8. 8.
    “The geometry of rank decompositions of matrix multiplication I: 2 × 2 matrices,” in: L. Chiantini, C. Ikenmeyer, J. M. Landsberg, and G. Ottaviani, Experimental Mathematics (2017). doi:
  9. 9.
    “The geometry of rank decompositions of matrix multiplication II: 3 × 3 matrices,” J. Pure Appl. Algebra (2018). doi:
  10. 10.
    R. Westwick, “Transformations on tensor spaces,” Pacific J. Math., 23, No. 3, 613–620 (1967).MathSciNetzbMATHGoogle Scholar
  11. 11.
    V. P. Burichenko, “Symmetries of matrix multiplication algorithms,” in: International Scientific Conference “Discrete Mathematics, Algebra and its Applications”, Abstracts, National Academy of Sciences of Belarus Institute of Mathematics, Minsk (2015), pp. 7–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saarland UniversitySaarbrückenGermany
  2. 2.Chechen State UniversityGroznyRussia

Personalised recommendations