Skip to main content
Log in

L Error Estimate for the Noncoercive Impulse Control QVI: A New Approach

  • III. Numerical Methods
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

In this paper, we introduce a new method to analyze the convergence of the standard finite element method for the noncoercive impulse control quasi-variational inequality (QVI). L convergence of the approximation is derived as a result of the geometrical convergence of a Bensoussan–Lions algorithm type and uniform error estimate between the continuous algorithm and its finite element counterpart. This approach is completely different from the one inroduced in [2] as it enables us to derive the error estimate through a computational iterative scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthiers-Villars, Paris (1984).

    MATH  Google Scholar 

  2. M. Boulbrachene, “The noncoercive quasi-variational inequalities related to impulse control problems,” Comput. Math. Appl., 35, 101–108 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Baccarin and S. Sanfelici, “Optimal impulse control on an unbounded domain with nonlinear cost functions,” Comput. Manag. Sci., 3, No. 1, 81–100 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Baccarin, “Optimal impulse control for a multidimensional cash management system with generalized cost functions,” Eur. J. Oper. Res., 196, 198–206 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Cortey-Dumont, “On the finite element approximation in the L1 norm of parabolic obstacle variational inequalites and quasivariational inequalities,” Rapport interne: 112, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France (1984).

  6. P. Cortey-Dumont, “Approximation numérique d’une inéquation quasi variationnelle liée à des problèmes de gestion de stock,” RAIRO, Analyse Numérique, 14, No. 4, 335–346 (1980).

    MathSciNet  MATH  Google Scholar 

  7. P. Cortey-Dumont, “On the finite element approximation in the L norm of variational inequalities with nonlinear operators,” Numer. Math., 47, 45–57 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. G. Ciarlet, Handbook of Numerical Analysis, Vol. II., North-Holland, Amsterdam, New York, Oxford (1991).

  9. C. Lu, W. Huang, and J. Qiu, “Maximum principle in linear finite element approximations of anisotropic diffusion–convectionreaction problems,” Numer. Math., 3, No. 127, 515–537 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Vejchodsky, “The discrete maximum principle for Galerkin solutions of elliptic problems,” Centr. Eur. J. Math., 10, No. 1, 25–43 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boulbrachene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulbrachene, M. L Error Estimate for the Noncoercive Impulse Control QVI: A New Approach. Comput Math Model 27, 489–496 (2016). https://doi.org/10.1007/s10598-016-9338-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-016-9338-x

Keywords

Navigation