Skip to main content
Log in

Visualizing the results of a mathematical information system for identification of materials by interaction with a short-period terahertz pulse

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The article describes a software interface for visualizing the results of experimental data processing in a computer information system for analysis and identification of materials, including explosives. The interface provides a wide range of graphic tools that draw distributions of spectral intensities, instantaneous Fourier spectra, spectrograms, and 3D plots viewable with different degrees of detail. The package has been tested with excellent results using physical experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, et al., “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol., 46, No. 9, R101-R112 (2001).

    Article  Google Scholar 

  2. T. J. Yen, W. J. Padilla, N. Fang, et al., “Terahertz magnetic response from artificial materials,” Science, 303, 1494–1496 (2004).

    Article  Google Scholar 

  3. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys., 39, No. 17, R301–R310 (2006).

    Article  Google Scholar 

  4. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter, 16, S601–S618 (2006).

    Article  Google Scholar 

  5. M. C. Kemp, P. F. Taday, B. E. Cole, et al., “Security applications of terahertz technology,” Proc. SPIE, 5070, 44–52 (2003).

    Article  Google Scholar 

  6. Y. Chen, H. Liu, Y. Deng, et al., “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE, 5411, 1–8 (2004).

    Article  Google Scholar 

  7. K. Yamamoto, M. Yamaguchi, F. Miyamaru, et al., “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys., 43, 414–417 (2004).

    Article  Google Scholar 

  8. F. Huang, B. Schulkin, H. Altan, et al., “Terahertz study of 1,3,5-trinitro-s-triazine by time-domain and Fourier transform infrared spectroscopy,” Appl. Phys. Lett., 85, 5535–5537 (2004).

    Article  Google Scholar 

  9. W. R. Tribe, D. A. Newnham, P. F. Taday, et al., “Hidden object detection: security applications of terahertz technology,” Proc. SPIE, 5354, 168–176 (2004).

    Article  Google Scholar 

  10. Y. C. Shen, T. Lo, P. F. Taday, et al., “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett., 86, 241116 (2005).

    Article  Google Scholar 

  11. H. B. Liu, H. Zhong, N. Karpowicz, et al., “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE, 95, No. 8, 1514–1527 (2007).

    Article  Google Scholar 

  12. C. Baker, T. Lo, W. R. Tribe, et al., “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE, 95, No. 8, 1559–1565 (2007).

    Article  Google Scholar 

  13. B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE, 95, No. 8, 1592–1604 (2007).

    Article  Google Scholar 

  14. Tera-View web site, http://www.teraview.com.

  15. Zomega Terahertz Corporation web site, http://www.zomega-terahertz.com.

  16. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz,” Optics Express, 15, No. 19, 12060–12067 (2007).

    Article  Google Scholar 

  17. L. Cohen, Proc. IEEE, 77, No. 7, 941–981 (1989).

    Article  Google Scholar 

  18. M. M. Nazarov, L. S. Mukina, A. V. Shuvaev, D. A. Sapozhnikov, A. P. Shkurinov, and V. A. Trofimov, Laser Phys. Lett., 2, No. 10, 471–475 (2005).

    Article  Google Scholar 

  19. V. N. Safonov, V. A. Trofimov, and A. P. Shkurinov, “Measurement accuracy of instantaneous spectral intensities of femtosecond pulses,” ZhTF, 76, No. 4, 78–85 (2006).

    Google Scholar 

  20. V. A. Trofimov and S. A. Varentsova, “New method for analysis of temporal dynamics of medium spectrum under the action of terahertz pulse,” Proc. SPIE, 6537, 6537-03 (2007).

    Google Scholar 

  21. S. A. Varentsova and V. A. Trofimov, “Reconstructing a signal and its instantaneous spectral characteristics by the moving window method,” ZhTF, 77, No. 5, 58–64 (2007).

    Google Scholar 

  22. V. A. Trofimov, Y. V. Troshchiev, and S. A. Varentsova, “High effective method for temporal terahertz spectroscopy under the condition of random probe signals,” Proc. SPIE, 6727, 67271H (2007).

    Article  Google Scholar 

  23. S. A. Varentsova, V. A. Trofimov, and Yu. V. Troshchiev, “Reconstructing a signal and its spectral characteristics dynamics with an irregular set of observations,” ZhTF, 78, No. 7, 57–68 (2008).

    Google Scholar 

  24. V. A. Trofimov and S. A. Varentsova, “Effective reconstruction of dynamics of medium response spectrum,” Proc. SPIE, 7119, 7119-24 (2008).

    Google Scholar 

  25. S. A. Varentsova and V. A. Trofimov, “A new method for identification of substances using spectral line dynamics in the terahertz range,” Integral, 45, No. 1, 14–16 (2009).

    Google Scholar 

  26. V. A. Trofimov and S. A. Varentsova, “About efficiency of reconstruction of materials using spectrum dynamics of medium response under the action of THz radiation,” Proc. SPIE, 7311, 7311-30 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Trofimov.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 33, pp. 82–89, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, V.V. Visualizing the results of a mathematical information system for identification of materials by interaction with a short-period terahertz pulse. Comput Math Model 21, 190–195 (2010). https://doi.org/10.1007/s10598-010-9063-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-010-9063-9

Keywords

Navigation