Skip to main content
Log in

Modeling general laws of spatial–temporal evolution of society: hyperbolic growth and historical cycles

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The article investigates a distributed model of global evolution of humanity. The model utilizes a onedimensional quasilinear heat equation with a volume source and a nonlinear thermal conductivity coefficient. The model is applied to describe cyclic processes that unfolded over the entire span of human evolution against the backdrop of general population growth with blowup. The model parameters are chosen so that they satisfy the following requirements: the space integral (total population size) increases hyperbolically; the evolution of the system goes through 11 stages corresponding to the main historical epochs in accepted classification and matches actual quantitative indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Prigogine and P. Glansdorff, Thermodynamic Theory of Structure, Stability, and Fluctuations [Russian translation], URSS, Moscow (2008).

    Google Scholar 

  2. I. Prigogine and G. Nicolis, Exploring Complexity. An Introduction [Russian translation], URSS, Moscow (2008).

    Google Scholar 

  3. H. Haken, Synergetics [Russian translation], Mir, Moscow (1980).

    MATH  Google Scholar 

  4. E. N. Knyazeva and S. P. Kurdyumov, Foundations of Synergetics. Blowup, Self-Organization, Tempo-Worlds [in Russian], Aleteya, St. Petersburg (2002).

  5. E. N. Knyazeva and S. P. Kurdyumov, Synergetics: Time Nonlinearity, Scenes of Coevolution [in Russian], KomKniga, Moscow (2007).

    Google Scholar 

  6. G. G. Malinetskii, Synergetics: The Future of the World and Russia [in Russian], URSS, Moscow (2008).

    Google Scholar 

  7. A. S. Malkov, A. V. Korotaev, and D. A. Khalturina, “A mathematical model of growth of the world population, the economy, technology, and education,” in: New Topics in Synergetics: New Reality, New Problems, New Generation [in Russian], Part I, Radiotekhnika, Moscow (2006), pp. 15–26.

  8. S. P. Kapitsa, S. P. Kurdyumov, and G. G. Malinetskii, Synergetics and Forecasts of the Future [in Russian], 2nd ed., Editorial URSS, Moscow (2001).

    Google Scholar 

  9. S. P. Kapitsa, General Theory of Growth of Humanity: How Many People Lived, Live, and Will Live on Earth. An Essay in the Theory of Humanity [in Russian], International Education Program, Moscow (1999).

  10. H. von Foerster, P.Mora, and L. Amiot, “Doomsday: Friday, 13 November, A.D. 2026,” Science, 132, 1291–1295 (1960).

    Article  Google Scholar 

  11. S. P. Kapitsa, Essays in the Theory of Growth of Humanity. Demographic Revolution and Information Society [in Russian], ZAO MMVB, Moscow (2008).

  12. V. A. Belavin, S. P. Kapitsa, and S. P. Kurdyumov, “Mathematical model of demographic processes allowing for spatial distribution,” Zh. Vychisl. Matem. i Matem. Fiz., 38, No. 6, 885–902 (1998).

    Google Scholar 

  13. V. A. Belavin and S. P. Kurdyumov, “Blowup in a demographic system. Scenarios of amplification of nonlinearity,” Zh. Vychisl. Matem. i Matem. Fiz., 40, No. 2, 238–251 (2000).

    Google Scholar 

  14. V. A. Belavin, E. N. Knyazeva, and E. S. Kurkina, “Mathematical modeling of global dynamics of world society,” in: G. G. Malinetskii and V. P. Maslov (editors), Nonlinearity in Modern Natural Sciences [in Russian], Knizhnyi Dom LIBROKOM, Moscow (2009), pp. 384–408.

    Google Scholar 

  15. E. N. Knyazeva and E. S. Kurkina, “Paths of history and images of future humanity: synergetics of global processes in history,” Zh. Filosofiya i Kul’tura, No. 10, 12–23 (2009).

  16. E. N. Knyazeva and E. S. Kurkina, “Global dynamics of world society,” Istoricheskaya Psikhologiya i Sotsiologiya Istorii, No. 1, 129–153 (2009).

  17. V. A. Korotaev, A. S. Malkov, and D. A. Khalturina, Law of History. Mathematical Modeling of Historical Macroprocesses. Demography, Economics, War [in Russian], KomKniga, Moscow (2005).

  18. I. Schumpeter, Theory of Economic Development [Russian translation], Progress, Moscow (1982).

    Google Scholar 

  19. B. B. Rodoman, Territories and Networks [in Russian], Oikumena, Smolensk (1999).

    Google Scholar 

  20. L. E. Grinin and A. V. Korotaev, Social Macroevoltuion: Genesis and Transformation of the World System [in Russian], Librokom URSS, Moscow (2009).

    Google Scholar 

  21. A. A. Samarskii, Theory of Finite-Difference Schemes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  22. G. G. Malinetskii (editor), Blowup Regimes: Evolution of an Idea [in Russian], Fizmatlit, Moscow (2006).

    Google Scholar 

  23. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blowup Regimes in Problems for Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  24. S. P. Kurdyumov and E. S. Kurkina, “Eigenfunction spectrum of the self-similar problem for the nonlinear heat equation with a source,” Zh. Vychisl. Matem. i Matem. Fiz., 44, No. 9, 1619–1637 (2004).

    MATH  MathSciNet  Google Scholar 

  25. G. G. Elenin, S. P. Kurdyumov, and A. A. Samarskii, “Time-dependent dissipative structures in a nonlinear heat-conducting medium,” Zh. Vychisl. Matem. i Matem. Fiz., 23, No. 2, 380–390 (1983).

    MATH  MathSciNet  Google Scholar 

  26. S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, and A. A. Samarskii, “Complex multidimensional combustion structures in a nonlinear medium,” Zh. Vychisl. Matem. i Matem. Fiz., 26, No. 8, 1186–1205 (1986).

    Google Scholar 

  27. E. D. Kuretova and E. S. Kurkina, “Blowup regimes in a problem for the nonlinear heat equation on a small interval,” Prikl. Matem. MGU, No. 29, 37–61 (2008).

    Google Scholar 

  28. E. S. Kurkina and I. M. Nikol’skii, “Stability and localization of unbounded solutions of the nonlinear heat equation in a plane,” Prikl. Matem. Informatika MGU, No. 31, 14–37 (2009).

  29. A. A. Vazhenin, “Evolution of spatial settlement structures: change of regularities,” Izv. RAN, Ser. Geogr., No. 3, 29–38 (2006).

  30. I. M. Savel’eva and A. V. Poletaev, History and Time. In Search of What Has been Lost [in Russian], Yazyki Russkoi Kul’tury, Moscow (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Kuretova.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 32, pp. 67–96, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuretova, E.D., Kurkina, E.S. Modeling general laws of spatial–temporal evolution of society: hyperbolic growth and historical cycles. Comput Math Model 21, 70–89 (2010). https://doi.org/10.1007/s10598-010-9055-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-010-9055-9

Keywords

Navigation