Skip to main content
Log in

A mathematical boundary integral equation analysis of standard viscoelastic solid polymers

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Structural analysis of viscoelastic solid polymers is one of the most important subjects in engineering structures. Several attempts have been so far made for the integral equation approach to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective boundary element formulation (BEF) is implemented for the standard linear solid (SLS) viscoelastic models. The SLS model provides an approximate representation of the observed behavior of a real polymer in its viscoelastic range. This formulation needs only Kelvin’s fundamental solution of isotropic elastostatics with material constants prescribed as explicit functions of time. This approach avoids the use of relaxation functions and mathematical transformations, and it is able to solve the quasistatic viscoelastic problems with any load time-dependence and boundary conditions. As an application, a numerical example is provided to validate the proposed formulation. The problem of the pressurization of thick-walled cylindrical viscoelastic tanks made of PMMA polymer is completely analyzed by this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Rizzo and D. J. Shippy, “An application of the correspondence principle of linear viscoelasticity theory,” SIAM J. Appl. Math., 21, 321–330 (1971).

    Article  MATH  Google Scholar 

  2. T. Shinokawa, N. Kaneko, N. Yoshida, and M. Kawahara, “Application of viscoelastic combined finite and boundary element analysis to geotechnical engineering,” in: C. A. Brebbia and G. Maier (eds.), Boundary Elements VII, Springer, Berlin, 2 (1985), pp. 37–46.

    Google Scholar 

  3. T. Kusama and Y. Mitsui, “Boundary element method applied to linear viscoelastic analysis,” Appl. Math. Model., 6, 285–290 (1982).

    Article  MATH  Google Scholar 

  4. J. P. Wolf and G. R. Darbre, “Time domain boundary element method in viscoelasticity with application to a spherical cavity,” Soil Dynam. Earthquake Eng., 5, 138–148 (1986).

    Article  Google Scholar 

  5. W. J. Sim and B. M. Kwak, “Linear viscoelastic analysis in time domain by boundary element method,” Comput. Struct., 29, 531–539 (1988).

    Article  MATH  Google Scholar 

  6. A. Carini and O. De Donato, “Fundamental solutions for linear viscoelastic continua,” Int. J. Solids Struct., 29, 2989–3009 (1992).

    Article  MATH  Google Scholar 

  7. S. S. Lee, Y. S. Sohn, and S. H. Park, “On fundamental solutions in time-domain boundary element analysis of linear viscoelasticity,” Eng. Anal. Bound. Elem., 13, 211–217 (1994).

    Article  Google Scholar 

  8. E. Pan, C. Sassolas, B. Amadei, and W.T. Pfeffer, “A 3-D boundary element formulation of viscoelastic media with gravity,” Comput. Mech., 19, 308–316 (1997).

    Article  MATH  Google Scholar 

  9. M. Schanz, “A boundary element formulation in time domain for viscoelastic solids,” Commun. Numer. Methods Eng., 15, 799–809 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. J. Pérez-Gavilán and M. H. Aliabadi, “A symmetric Galerkin boundary element method for dynamic frequency domain viscoelastic problems,” Comput. Struct., 79, 2621–2633 (2001).

    Article  Google Scholar 

  11. S. Syngellakis, “Boundary element methods for polymer analysis,” Eng. Anal. Bound. Elem., 27, 125–135 (2003).

    Article  MATH  Google Scholar 

  12. S. Syngellakis and J. W. Wu, “Evaluation of various schemes for quasi-static boundary element analysis of polymers,” Eng. Anal. Bound. Elem., 28, 733–745 (2004).

    Article  MATH  Google Scholar 

  13. Y. Huang, S. G. Mogilevskaya, and S. L. Crouch, “Complex variable boundary integral method for linear viscoelasticity,” Eng. Anal. Bound. Elem., 30, 1049–1056 (2006).

    Article  Google Scholar 

  14. A. D. Mesquita and H. B. Coda, “A boundary element methodology for viscoelastic analysis,” Appl. Math. Model., 31, 1149–1185 (2007).

    Article  MATH  Google Scholar 

  15. J. Wang and B. Birgisson, “A time domain boundary element method for modeling the quasi-static viscoelastic behavior of asphalt pavements,” Eng. Anal. Bound. Elem., 31, 226–240 (2007).

    Article  Google Scholar 

  16. S. Syngellakis and J. Wu, “Evaluation of polymer fracture parameters by the boundary element method,” Eng. Fract. Mech., 75, 1251–1265 (2008).

    Article  Google Scholar 

  17. H. Ashrafi, M. Farid, and M. Kasraei, Boundary Element Formulation for General Viscoelastic Solids, Proceedings of the 7 th Annual International Conference of Iranian Aerospace Society, Sharif University of Technology, Tehran, Iran, Feb. 2008.

  18. H. Ashrafi, M. Farid, and M. Kasraei, “A new boundary element formulation for general viscoelastic solids,” Int. J. Aerospace Sci. Technol., in press (2009).

  19. E. Riande, R. Diaz-Calleja, M. G. Prolongo, and C. Salom, Polymer Viscoelasticity, Marcel Dekker, New York (2000).

    Google Scholar 

  20. I. M. Ward and D. W. Hadley, An Introduction to the Mechanical Properties of Solid Polymers, John Wiley and Sons, Chichester (2004).

    Google Scholar 

  21. W. Flügge, Viscoelasticity, Springer, Berlin (1975).

    MATH  Google Scholar 

  22. N. G. McCrum, C. P. Buckley, and C. B. Bucknall, Principles of Polymer Engineering, Oxford University Press, New York (1997).

    Google Scholar 

  23. R. S. Lakes, Viscoelastic Solids, CRC Press, Boca Raton (1999).

    Google Scholar 

  24. L. E. Malvern, Introduction to the Mechanics of Continuous Medium, Prentice Hall, Englewood Cliffs, New Jersey (1969).

  25. G. T. Mase and G. E. Mase, Continuum Mechanics for Engineers, CRC Press, Boca Raton (1999).

    MATH  Google Scholar 

  26. A. A. Becker, The Boundary Element Method in Engineering, McGraw-Hill, New York (1992).

    Google Scholar 

  27. M. H. Aliabadi, The Boundary Element Method (Applications in Solids and Structures), Wiley, Chichester (2002).

    MATH  Google Scholar 

  28. X.-W. Gao, “The radial integration method for evaluation of domain integrals with boundary-only discretization,” Eng. Anal. Bound. Elem., 26, 905–916 (2002).

    Article  MATH  Google Scholar 

  29. J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer, Berlin (1997).

    Google Scholar 

  30. G. Huang and H. Lu, “Measurements of Young's relaxation modulus using nanoindentation,” Mech. Time-Depend. Mater., 10, 229–243 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashrafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashrafi, H., Farid, M. A mathematical boundary integral equation analysis of standard viscoelastic solid polymers. Comput Math Model 20, 397–415 (2009). https://doi.org/10.1007/s10598-009-9046-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-009-9046-x

Keywords

Navigation