Skip to main content
Log in

Achieving high-efficiency second harmonic generation in a sequence of laser pulses with random peak intensity. Part II. Suppression of intensity fluctuations in a quadratic-nonlinearity medium

  • Mathematical Modeling
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The study examines suppression of peak intensity fluctuations in a sequence of fixed-energy femtosecond pulses by so-called cascade second harmonic generation (SHG). In Part II we analyze the propagation of a sequence of subpulses in an optical fiber without self-interaction characterized by cubic nonlinearity and large wavenumber detuning between the principal mode and the second harmonic. The propagation regimes discovered for a sequence of femtosecond pulses ensure suppression of peak intensity fluctuations. The mean peak intensity can be simultaneously increased by chirping the pulses in a particular section and also by adjusting the wavenumber detuning and increasing the quadratic nonlinearity while at the same time reducing to zero the phase of the distribution when the pulses pass to a new part of the nonlinear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Karamzin and A. P. Sukhorukov, Pis'ma v ZhETF, 20, 734–739 (1974).

    Google Scholar 

  2. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Physics Reports, 370, No. 2, 63–235 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Ashihara, J. Nishina, T. Shimura et al., JOSA B, 19, 2505–2510 (2002).

    Google Scholar 

  4. N. A. Papadogiannis et al., Phys. Rev. Lett., 90, 133902 (2003).

    Article  Google Scholar 

  5. N. A. Papadogiannis et al., Appl. Phys. B, 73, 687 (2001).

    Article  Google Scholar 

  6. C. Altucci et al., Phys. Rev. A, 61, 021801 (2000).

  7. P. M. Paul et al., Science, 292, 1689 (2001).

    Article  Google Scholar 

  8. D. Charalambidis et al., Physica Scripta (TI), T105, 23–26 (2003).

    Article  Google Scholar 

  9. U. Teubner et al., Phys. Rev. A, A67, 013816 (2003).

  10. A. Hertz et al., Phys. Rev. A, 64, 051801 (2001).

  11. V. V. Steblina, Y. S. Kivshar, M. Lisak, and B. A. Malomed, Optics Communications, 118, 345–352 (1995).

    Article  Google Scholar 

  12. J. Sun, D. Liu, and D. Huang, Optical and Quantum Electronics, 36, 577–587 (2004).

    Article  Google Scholar 

  13. C. R. Menyak, R. Schiek, and L. Torner, JOSA B, 11, No. 12, 2434–2443 (1994).

    Article  Google Scholar 

  14. L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruellas, and G. I. Stegeman, Optics Communications, 121, 149–155 (1995).

    Article  Google Scholar 

  15. Y. S. Kivshar and D. E. Pelinovsky, Physics Reports, 331, 117–195 (2000).

    Article  MathSciNet  Google Scholar 

  16. I. Towers and B. A. Malomed, JOSA B, 19, No. 3, 537–543 (2002).

    MathSciNet  Google Scholar 

  17. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt. B: Quantum and Semiclass. Opt., 7, R53–R57 (2005).

    Article  Google Scholar 

  18. F. Wise and P. Di Trapani, Opt. Photon. News, 13, No. 12, 29–34 (2002).

    Article  Google Scholar 

  19. Y.-F. Chen, K. Beckwitt, and F. Wise, Phys. Rev. E, E70, No. 4, 046610 (2004).

  20. X. Lui, K. Beckwitt, and F. Wise, Phys. Rev. E, 61, No. 5, R4722–R4725 (2000).

    Article  Google Scholar 

  21. X. Lui, K. Beckwitt, and F. Wise, Phys. Rev. E, 62, No. 1, 1328–1340 (2000).

    Article  Google Scholar 

  22. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals [Russian translation], Fizmatlit, Moscow (2005).

    Google Scholar 

  23. N. N. Akhmediev and A. Ankevich, Solitons: Nonlinear Pulses and Beams [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  24. N. N. Rozanov, S. V. Fedorov, and A. N. Shatsev, Optics and Spectroscopy, 102, No. 1, 83–85 (2007).

    Article  Google Scholar 

  25. T. M. Lysak and V. A. Trofimov, “On the possibility of a soliton-like regime of two-wave femtosecond pulse propagation in an optical fiber under SHG conditions,” Optika i Spektroskopiya, 94, No. 4, 808–814 (2003).

    Google Scholar 

  26. T. M. Lysak and V. A. Trofimov, “On the possibility of generation of a sequence of attosecond pulses with SHG of high-intensity femtosecond pulses,” Pis'ma v ZhTF, 30, No. 13, 83–88 (2004).

    Google Scholar 

  27. V. A. Trofimov and T. M. Lysak, “Soliton-like regime of femtosecond laser pulse propagation in bulk media under the conditions of SHG,” in: Proc. Int. Conf. NAA'4, Lect. Notes Math., Vol. 3401, Springer (2005), pp. 542–549.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Lysak.

Additional information

For Part I, See Prikladnaya Matematika i Informatika, No. 27, pp. 5–24, 2007; English Translation: Computational Mathematics and Modeling, Vol. 19, No. 4, pp. 333–342, 2008.

Translated from Prikladnaya Matematika i Informatika, No. 28, pp. 5–36, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysak, T.M., Trofimov, V.A. Achieving high-efficiency second harmonic generation in a sequence of laser pulses with random peak intensity. Part II. Suppression of intensity fluctuations in a quadratic-nonlinearity medium. Comput Math Model 20, 1–25 (2009). https://doi.org/10.1007/s10598-009-9015-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-009-9015-4

Keywords

Navigation