Community Mental Health Journal

, Volume 45, Issue 5, pp 333–340 | Cite as

Antidepressant Adequacy and Work Status Among Medicaid Enrollees with Disabilities: A Restriction-based, Propensity Score-adjusted Analysis

  • Eric G. Smith
  • Alexis D. Henry
  • Jianying Zhang
  • Fred Hooven
  • Steven M. Banks
Original Paper

Abstract

This cross-sectional study of adult survey respondents with disability and depression (n = 199) enrolled in Massachusetts’ Medicaid program examined the association of adequately or inadequately prescribed antidepressant treatment and self-reported work status using conditional logistic regression, controlling for age, gender, race, marital status, education, receipt of SSI/SSDI, self-reported disabling condition, and health status. Confounding by severity was addressed by two methods: restriction of our sample and subsequent stratification by propensity score. Individuals receiving adequate antidepressant treatment had an increased odds of working compared to individuals receiving inadequate treatment, both in analyses in which restriction was used to limit confounding (OR = 3.45, 95% CI = 1.15–10.32, P < .03), and in analyses which combined restriction with adjustment by propensity score stratification (OR = 3.04, 95% CI = 1.01–9.62, P < .05). Among this sample of Medicaid enrollees with disability and depression, those receiving adequate antidepressant treatment were significantly more likely to report working.

Keywords

Depression Disability Employment Antidepressant treatment Restriction Propensity score 

References

  1. Addington, D. D., Azorin, J. M., Falloon, I. R., Gerlach, J., Hirsch, S. R., & Siris, S. G. (2002). Clinical issues related to depression in schizophrenia: An international survey of psychiatrists. Acta Psychiatrica Scandinavica, 105, 189–195. doi:10.1034/j.1600-0447.2002.1o458.x.PubMedCrossRefGoogle Scholar
  2. Altshuler, L., Suppes, T., Black, D., Nolen, W. A., Keck, P. E., Frye, M. A., et al. (2003). Impact of antidepressant discontinuation after acute bipolar depression remission on rates of depressive relapse at 1-year followup. The American Journal of Psychiatry, 160, 1252–1262. doi:10.1176/appi.ajp.160.7.1252.PubMedCrossRefGoogle Scholar
  3. American Psychiatric Association. (2000). American psychiatric association practice guidelines for the treatment of patients with major depressive disorder (2nd ed.). Arlington, VA: Author.Google Scholar
  4. American Psychiatric Association. (2004). Practice guidelines and resources for treatment of patients with Schizophrenia (2nd ed.). Arlington, VA: Author.Google Scholar
  5. Beasley, R., Burgess, C., Pearce, N., Woodman, K., & Crane, J. (1994). Confounding by severity does not explain the association between fenoterol and asthma death. Clinical and Experimental Allergy, 24, 660–668. doi:10.1111/j.1365-2222.1994.tb00970.x.PubMedCrossRefGoogle Scholar
  6. Braitman, L. E., & Rosenbaum, P. R. (2002). Rare outcomes, common treatments: Analytic strategies using propensity scores. Annals of Internal Medicine, 137, 693–696.PubMedGoogle Scholar
  7. Burton, W. N., Chen, C. Y., Conti, D. J., Schultz, A. B., & Edington, D. W. (2007). The association of antidepressant medication adherence with employee disability absences. The American Journal of Managed Care, 13, 105–112.PubMedGoogle Scholar
  8. Clark, S., Costantino, T., Rudnitsky, G., & Camargo, C. A. (2005). Observational study of intravenous versus oral corticosteroids for acute asthma: An example of confounding by severity. Academic Emergency Medicine, 12, 439–445. doi:10.1111/j.1553-2712.2005.tb01545.x.PubMedCrossRefGoogle Scholar
  9. Dewa, C. S., Hoch, J. S., Lin, E., Paterson, M., & Goering, P. (2003). Pattern of antidepressant use and duration of depression-related absence from work. The British Journal of Psychiatry, 183, 507–513. doi:10.1192/bjp.183.6.507.PubMedCrossRefGoogle Scholar
  10. Emptage, N. P., Strun, R., & Robinson, R. L. (2005). Depression and comorbid pain as predictors of disability, employment, insurance status and health care costs. Psychiatric Services (Washington, D.C.), 56, 468–474. doi:10.1176/appi.ps.56.4.468.Google Scholar
  11. Garrett, J. E., Lanes, S. F., Kolbe, J., & Rea, H. H. (1996). Risk of severe life threatening asthma and beta agonist type: An example of confounding by severity. Thorax, 51, 1093–1099. doi:10.1136/thx.51.11.1093.PubMedCrossRefGoogle Scholar
  12. Greenberg, P. E., Kessler, R. C., Birnbaum, H. G., Leong, S. A., Lowe, S. W., Berglund, P. A., et al. (2003). The economic burden of depression in the United States: How did it change between 1990 and 2000? The Journal of Clinical Psychiatry, 64, 1465–1475.PubMedGoogle Scholar
  13. Henry, A. D., Gallagher, P., Stringfellow, V., Olin, L., Hooven, F., & Himmelstein, J. (2007). Notes from the field: Contemporary strategies for developing surveys of people with disabilities. The MassHealth employment and disability survey. In T. Kroll, D. Kerr, P. Placek, J. Cyril, & G. Hendershot (Eds.), Towards best practices for surveying people with disabilities (Vol. 1, pp. 127–146). Hauppauge, NY: Nova Science Publishers.Google Scholar
  14. Henry, A.D., Hooven, F., Averbach, A., Hashemi, L., Zhang, J., Olin, L., et al.(2005). Disability and employment: Findings from the MassHealth employment and disability survey. Final report for Massachusetts medicaid infrastructure and comprehensive employment opportunities grant, Center for Health Policy and Research, University of Massachusetts Medical School.Google Scholar
  15. Henry, A. D., Hooven, F., Hashemi, L., Banks, S., Clark, R., & Himmelstein, J. (2006). Disabling conditions and work outcomes among enrollees in a Medicaid buy-in program. Journal of Vocational Rehabilitation, 25(2), 107–117.Google Scholar
  16. Joffe, M. M., & Colditz, G. A. (1998). Restriction as a method for reducing bias in the estimation of direct effects. Statistics in Medicine, 17, 2233–2249. doi:10.1002/(SICI)1097-0258(19981015)17:19<2233::AID-SIM922>3.0.CO;2-0.PubMedCrossRefGoogle Scholar
  17. Kessler, R. C., Barber, C., Birnbaum, H. G., Frank, R. C., Greenberg, P. E., Rose, R. M., et al. (1999). Depression in the workplace: Effects on short-term disability. Health Affairs, 18, 163–171. doi:10.1377/hlthaff.18.5.163.PubMedCrossRefGoogle Scholar
  18. Kinne, S., Patrick, D. L., & Doyle, D. L. (2004). Prevalence of secondary conditions among people with disabilities. American Journal of Public Health, 94, 443–445. doi:10.2105/AJPH.94.3.443.PubMedCrossRefGoogle Scholar
  19. Kronick, R., Gilmer, T., Dreyfus, T., & Lee, L. (2000). Improving health-based payment for medicaid beneficiaries: CDPS. Health Care Financing Review, 21(3), 29–64.PubMedGoogle Scholar
  20. McDermott, S., Moran, R., Platt, T., & Dasari, S. (2006). Variation in health conditions among groups of adults with disabilities in primary care. Journal of Community Health, 31, 147–159. doi:10.1007/s10900-005-9008-y.PubMedCrossRefGoogle Scholar
  21. McNeil, J. (2001). Americans with disabilities: Household economic studies, 1997. Washington, DC: US Department of Commerce, Economics and Statistics Administration, US Census Bureau.Google Scholar
  22. Mintz, J., Mintz, L. I., Arruda, M. J., & Hwang, S. S. (1992). Treatments of depression and the functional capacity to work. Archives of General Psychiatry, 49, 761–768.PubMedGoogle Scholar
  23. Mitra, M., Wilber, N., Allen, D., & Walker, D. K. (2005). Prevalence and correlates of depression as a secondary condition among adults with disabilities. The American Journal of Orthopsychiatry, 75, 76–85. doi:10.1037/0002-9432.75.1.76.PubMedCrossRefGoogle Scholar
  24. Oquendo, M. A., Baca-Garcia, E., Kartachov, A., Khait, V., Campbell, C. E., Richards, M., et al. (2003). A computer algorithm for calculating the adequacy of antidepressant treatment in unipolar and bipolar depression. The Journal of Clinical Psychiatry, 64, 825–833.PubMedCrossRefGoogle Scholar
  25. Sachs, G., Nierenberg, A. A., Calabrese, J. R., Marangell, L. B., Wisniewski, S. R., Gyulai, L., et al. (2007). Effectiveness of adjunctive antidepressant treatment for bipolar depression. The New England Journal of Medicine, 356, 1711–1722. doi:10.1056/NEJMoa064135.PubMedCrossRefGoogle Scholar
  26. SAS Institute, Inc. (2002–2003). SAS for windows, version 9.1. Cary NC: Author.Google Scholar
  27. Schneeweiss, S., Patrick, A. R., Sturmer, T., Brookhart, M. A., Avorn, J., Maclure, M., et al. (2007). Increasing levels of restriction in pharmacoepidemiologic database studies of elederly and comparison with randomized trial results. Medical Care, 45, S131–S142. doi:10.1097/01.mlr.0000244636.54588.2b.PubMedCrossRefGoogle Scholar
  28. Schoenbaum, M., Unutzer, J., McCaffrey, D., Duan, N., Sherbourne, C., & Wells, K. B. (2002). The effects of primary care depression treatment on patients’ clinical status and employment. Health Services Research, 37, 1145–1158. doi:10.1111/1475-6773.01086.PubMedCrossRefGoogle Scholar
  29. Sepehry, A. A., Potvin, S., Elie, R., & Stip, E. (2007). Selective serotonin reuptake inhibitor (SSRI) Add-on therapy for the negative symptoms of schizophrenia: A meta-analysis. The Journal of Clinical Psychiatry, 68, 604–610.PubMedCrossRefGoogle Scholar
  30. Simpson, S. H., Eurich, D. T., Majumdar, S. R., Padwal, R. S., Tsuyuki, R. T., Varney, J., et al. (2006). A meta-analysis of the association between adherence to drug therapy and mortality. British Medical Journal, 333, 15–18. doi:10.1136/bmj.38875.675486.55.PubMedCrossRefGoogle Scholar
  31. Stein, M. B., Cox, B. J., Afifi, T. O., Belik, S.-L., & Sareen, J. (2006). Does co-morbid depressive illness magnify the impact of chronic physical illnesses? A population-based perspective. Psychological Medicine, 36, 587–596. doi:10.1017/S0033291706007239.PubMedCrossRefGoogle Scholar
  32. Stewart, W. F., Ricci, J. A., Chee, E., Hahn, S. R., & Morganstein, D. (2003). Cost of lost productive work time among US workers with disabilities. Journal of the American Medical Association, 289, 3135–3144. doi:10.1001/jama.289.23.3135.PubMedCrossRefGoogle Scholar
  33. U. S. Department of Health, Human Services. (2005). The Surgeon General’s call to action to improve the health and wellness of persons with disabilities. Washington, DC: Author.Google Scholar
  34. Waghorn, G., Chant, D., & Lloyd, C. (2006). Labor force activity among Australians with musculoskeletal disorders comorbid with depression and anxiety disorders. Journal of Occupational Rehabilitation, 16, 241–252. doi:10.1007/s10926-006-9018-3.PubMedCrossRefGoogle Scholar
  35. Wang, J., & Donnan, P. T. (2001). Propensity score methods in drug safety studies: Practice, strengths, and limitations. Pharmacoepidemiology and Drug Safety, 10, 341–344. doi:10.1002/pds.656.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eric G. Smith
    • 1
  • Alexis D. Henry
    • 2
  • Jianying Zhang
    • 2
  • Fred Hooven
    • 3
  • Steven M. Banks
    • 2
    • 4
  1. 1.Center for Psychopharmacologic Research and TreatmentUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Center for Health Policy and Research (CHPR)University of Massachusetts Medical SchoolShrewsburyUSA
  3. 3.Center for Outcomes ResearchUniversity of Massachusetts Medical SchoolWorcesterUSA
  4. 4.Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations