Skip to main content
Log in

Speeding up the reservoir simulation by real time prediction of the initial guess for the Newton-Raphson’s iterations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We study linear models for the prediction of the initial guess for the nonlinear Newton-Raphson solver. These models use one or more of the previous simulation steps for prediction, and their parameters are estimated by the ordinary least-squares method. A key feature of the approach is that the parameter estimation is performed using data obtained directly during the simulation and the models are updated in real time. Thus we avoid the expensive process of dataset generation and the need for pre-trained models. We validate the workflow on a standard benchmark Egg dataset of two-phase flow in porous media and compare it to standard approaches for the estimation of initial guess. We demonstrate that the proposed approach leads to reduction in the number of iterations in the Newton-Raphson algorithm and speeds up simulation time. In particular, for the Egg dataset, we obtained a 30% reduction in the number of nonlinear iterations and a 20% reduction in the simulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The Egg dataset analysed during the current study is available in the repository, https://data.4tu.nl/articles/dataset/The_Egg_Model_-_data_files/12707642.

References

  1. Zhangxin, C., Guanren, H., Yuanle, M.: Computational Methods for Multiphase Flows in Porous Media. Society for Industrial and Applied Mathematics, Dallas (2006)

    Google Scholar 

  2. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier Scientific Publishing Company, Amsterdam (1977)

    Google Scholar 

  3. Ertekin, T., Kassem, A., Jamal, H., King, G.R.: Basic Applied Reservoir Simulation. Society of Petroleum Engineers, Richardson (2001)

    Book  Google Scholar 

  4. Casella, F., Bachmann, B.: On the Choice of Initial Guesses for the Newton-Raphson algorithm. Appl Math Comput 398, 125–991 (2021). https://doi.org/10.1016/j.amc.2021.125991

    Article  Google Scholar 

  5. Fischer, P.F.: Projection Techniques for Iterative Solution of Ax = b with Successive Right-Hand Sides. Comput Methods Appl Mech Eng 163, 193–204 (1998). https://doi.org/10.1016/S0045-7825(98)00012-7

    Article  Google Scholar 

  6. Austin, A.P., Chalmers, N., Warburton, T.: Initial Guesses for Sequences of Linear Systems in a GPU-Accelerated incompressible flow solver. SIAM J Sci Comput 43, 259–289 (2021). https://doi.org/10.1137/20M1368677

    Article  Google Scholar 

  7. Pop, I.S., Radu, F., Knabner, P.: Mixed finite elements for the Richards’ equation: linearization procedure. J Comput Appl Math 168, 365–373 (2004). https://doi.org/10.1016/j.cam.2003.04.008

    Article  Google Scholar 

  8. Radu, F.A., Pop, I.S., Knabner, P.: Newton—Type Methods for the Mixed Finite Element Discretization of Some Degenerate Parabolic Equations. In: Castro, A.B., Gómez, D., Quintela, P., Salgado, P. (eds.) Numerical mathematics and advanced applications, pp. 1192–1200. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/978-3-540-34288-5_120

  9. Radu, F.A., List, F.: A study on iterative methods for solving Richards’ equation. Comput Geosci 20, 341–353 (2016). https://doi.org/10.1007/s10596-016-9566-3

    Article  Google Scholar 

  10. Mitra, K., Pop, I.S.: A modified L-scheme to solve nonlinear diffusion problems. Comput Math Appl 77, 1722–1738 (2019). https://doi.org/10.1016/j.camwa.2018.09.042

    Article  Google Scholar 

  11. Stokke, J.S., Mitra, K., Storvik, E., Both, J.W., Radu, F.A.: An adaptive solution strategy for Richards’ equation. Comput Math Appl 152, 155–167 (2023). https://doi.org/10.1016/j.camwa.2023.10.020

    Article  Google Scholar 

  12. Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput Math Appl 77, 1479–1502 (2019). https://doi.org/10.1016/j.camwa.2018.07.033

    Article  Google Scholar 

  13. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Iterative Solvers of the Implicit Parallel Accurate Reservoir Simulator (IPARS), i: Single processor case. Technical report, The University of Texas, Austin, TX (2000). https://www.oden.utexas.edu/media/reports/2000/0028.pdf

  14. Sudakov, O., Koroteev, D., Belozerov, B., Burnaev, E.:Artificial Neural Network Surrogate Modeling of Oil Reservoir: A Case Study. In: Lu, H., Tang, H., Wang, Z. (eds.) Advances in Neural Networks – ISNN 2019, pp. 232–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22808-8_24

  15. Zhaoyang, L.J., Yimin, L., Durlofsky, L.J.: Deep-Learning-Based Surrogate Model for Reservoir Simulation with Time-Varying Well Controls. J. Pet. Sci. Eng. 192, 107–273 (2020). https://doi.org/10.1016/j.petrol.2020.107273

    Article  CAS  Google Scholar 

  16. Nagoor Kani, J., Elsheikh, A.H.: Reduced order modeling of subsurface multiphase flow models using deep residual recurrent neural networks. Transp. Porous Media 126, 713–741 (2019). https://doi.org/10.1007/s11242-018-1170-7

    Article  Google Scholar 

  17. Illarionov, E., Temirchev, P., Voloskov, D., Kostoev, R., Simonov, M., Pissarenko, D., Orlov, D., Koroteev, D.: End-to-end Neural Network Approach to 3D Reservoir Simulation and Adaptation. J. Pet. Sci. Eng. 208, 109–332 (2022). https://doi.org/10.1016/j.petrol.2021.109332

    Article  CAS  Google Scholar 

  18. Loh, K., Shoeibi Omrani, P., Linden, R.: Deep Learning History Matching for Real Time Production Forecasting. Int. J. Numer. Methods Eng. 2018, 2214–4609 (2018). https://doi.org/10.3997/2214-4609.201803016

    Article  Google Scholar 

  19. Illarionov, E., Temirchev, P., Voloskov, D., Gubanova, A., Koroteev, D., Simonov, M.: 3D Reservoir Model History Matching Based on Machine Learning Technology. SPE Russian Petroleum Technology Conference, vol. Day 2 Tue, October 27, 2020 (2020). https://doi.org/10.2118/201924-MS. D023S012R001

  20. Fraces, C.G., Tchelepi, H.: Uncertainty Quantification for Transport in Porous Media Using Parameterized Physics Informed Neural Networks. SPE Reservoir Simulation Conference, vol. Day 1 Tue, March 28, 2023, pp. 011–004003 (2023). https://doi.org/10.2118/212255-MS

  21. Abbasi, J., Andersen, P.Ø.: Improved Initialization of Non-Linear Solvers in Numerical Simulation of Flow in Porous Media with a Deep Learning Approach. SPE Europec featured at EAGE Conference and Exhibition, vol. Day 3 Wed, June 08, 2022 (2022). https://doi.org/10.2118/209667-MS . D031S008R005

  22. Trifonov, V.: Acceleration of Reservoir Modeling with Machine Learning. Master’s thesis, Skolkovo Institute of Science and Technology (2023)

  23. Odot, A., Haferssas, R., Cotin, S.: DeepPhysics: A physics aware deep learning framework for real-time simulation. Int. J. Numer. Methods Eng. 123, 2381–2398 (2020). https://doi.org/10.1002/nme.6943

    Article  Google Scholar 

  24. Knut-Andreas, L.: An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press, Cambridge (2019)

    Google Scholar 

  25. Peaceman, D.W.: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation With Nonsquare Grid Blocks and Anisotropic Permeability. Soc. Pet. Eng. J. 23, 531–543 (1983). https://doi.org/10.2118/10528-PA

    Article  Google Scholar 

  26. Atkinson, K.: An Introduction to Numerical Analysis. Wiley, Hoboken (1989)

    Google Scholar 

  27. Tyrtyshnikov, E.E.: A Brief Introduction to Numerical Analysis. Birkhäuser Boston, Boston (2012)

    Google Scholar 

  28. Jansen, J.D., Fonseca, R.M., Kahrobaei, S., Siraj, M., Essen, G., Hof, P.: The Egg model - a Geological Ensemble for Reservoir Simulation. Geosci Data J 1, 192–195 (2014). https://doi.org/10.1002/gdj3.21

    Article  Google Scholar 

  29. Neidinger, R.D.: Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming. SIAM Rev 52, 545–563 (2010). https://doi.org/10.1137/080743627

    Article  Google Scholar 

  30. Killough, J.E.: Ninth SPE Comparative Solution Project: A Reexamination of Black-Oil Simulation. SPE Reservoir Simulation Conference, vol. All Days (1995). https://doi.org/10.2118/29110-MS. SPE-29110-MS

  31. Christie, M.A., Blunt, M.J.: Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques. SPE Reserv. Eval. Eng. 4, 308–317 (2001). https://doi.org/10.2118/72469-PA

    Article  CAS  Google Scholar 

  32. Rwechungura, R., Suwartadi, E., Dadashpour, M., Kleppe, J., Foss, B.: The Norne Field Case-A Unique Comparative Case Study. SPE Intelligent Energy International Conference and Exhibition, vol. All Days (2010). https://doi.org/10.2118/127538-MS. SPE-127538-MS

  33. Schlumberger: ECLIPSE Reservoir Simulation Software: Technical Description. Schlumberger, (2014). Schlumberger

  34. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2013)

    Google Scholar 

  35. Polyak, B.: Introduction to Optimization. Optimization Software Inc, New York (2010)

    Google Scholar 

  36. Qian, N.: On the Momentum Term in Gradient Descent Learning Algorithms. Neural Networks 12(1), 145–151 (1999). https://doi.org/10.1016/S0893-6080(98)00116-6

    Article  CAS  Google Scholar 

  37. Hogg, R., McKean, J., Craig, A.: Introduction to Mathematical Statistics. Pearson, Boston (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musheg Petrosyants.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrosyants, M., Trifonov, V., Illarionov, E. et al. Speeding up the reservoir simulation by real time prediction of the initial guess for the Newton-Raphson’s iterations. Comput Geosci (2024). https://doi.org/10.1007/s10596-024-10284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10596-024-10284-z

Keywords

Navigation