Skip to main content

Advertisement

Log in

Competitive algorithm to balance and predict blasting outcomes using measured field data sets

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this investigation, a new technique termed Firefly-XGBoost was developed to forecast and reconcile blasting results like mean fragmentation size (MFS) and peak particle velocity (PPV). As a result, the particle swarm optimization (PSO) algorithm and firefly algorithm were used to enhance the effectiveness of the XG Boost conventional model. A total of 152 blast experiments were performed at three different mines, and data acquired from these experiments were used to train the model. This data included special feature of joints spanning height (JSH), and other blast parameters like the number of joint sets, the total quantity of explosives, stemming length, decking length, maximum charge/delay, and rock uni-axial compressive strength (UCS).The XG Boost, PSO-XG Boost, and Firefly XG Boost algorithms were compared, and the Firefly-XG Boost findings were superior according to RMSE and R2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Available in https://github.com/SriChandrahas/XGBoost-Public/blob/ 6c14d4a4ae26f6c8f3c6e2763594235c5145eee2/XGBOOST_FRAG.ipynb.

References

  1. Hagan, T.N.: The influence of controllable blast parameters on fragmentation and miningcosts, Proceedings1stInternational Symposium on Rock Fragmentation by Blasting, Lülea, Sweden, Vol.1, pp. 31-32. (1983)

  2. Esmaeili, M., AlireazaSalimi, C.D., Abbaszadeh, M., Bazzazi, A.A.: Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arab J. Geosci. 8, 6881–6893 (2015). https://doi.org/10.1007/s12517-014-1677-3

    Article  Google Scholar 

  3. Hakan, Ak., Melih, I., Mahmut, Y., Adnan, K.: Evaluation of ground vibration effect of blasting operations in a magnesite mine. Soil Dyn. Earthq. Eng. 29, 669–676 (2009)

    Article  Google Scholar 

  4. Chiappetta, R.F., Borg, D.G., Sterner, V.A.: Explosives and Rock Blasting, p. 233. Atlas Powder Company, Dallas (1987)

    Google Scholar 

  5. Chandrahas, S.N., Choudhary, B.S., Krishna Prasad, N.S.R., Musunuri, V., Rao, K.K.: An investigation into the effect of rockmass properties on mean fragmentation. Arch. Min. Sci. 66, 561–578 (2021). (CrossRef)

    Google Scholar 

  6. Choudhary, B.S., Sonu, K., Kishore, K., Anwar, S.: Effect of rock mass properties on blast-induced rock fragmentation. Int. J. Min. Miner. Eng. 7(2), 89–101 (2016). https://doi.org/10.1504/IJMME.2016.076489

    Article  Google Scholar 

  7. La Pointe, P.R., Ganow, H.G.: The influence of cleats and joints on production blast fragment size in the Wyodak Coal, Compbell Country, Wyoming, in Proceedings of the 27th US Symposium on Rock Mechanics, University of Alabama. pp. 464–70. (1986)

  8. Goodman, R.E., Shi, G.H.: Block Theory and its Application to Rock Engineering. Prentice-Hall, Englewood Cliffs (1985)

    Google Scholar 

  9. Chakraborty, A.K., Jethwa, J.L., Paithankar, A.G.: Assessing the effects of joint orientation and rock mass quality on fragmentation and overbreak in tunnel blasting. Tunn. Undergr. Space Technol. 9(4), 471–482 (1994). https://doi.org/10.1016/0886-7798(94)90106-6

    Article  Google Scholar 

  10. Ouchterlony, F.: What does the fragment size distribution of blasted rock looklike? Third European Federation of Explosives Engineers (EFEE) World Conference onExplosives and Blasting / [ed] R. Holmberg, European Federation of Explosives Engineers, 2005, pp. 189–199. (1996)

  11. Mandl, G.: Rock Joints: The Mechanical Genesis, p. 221. Springer-Verlag, Heidelberg, Germany (2005). (ISBN 978-3-540-24553-7)

    Google Scholar 

  12. Davis, G.H., Reynolds, S.J., Kluth, C.: Structural Geology of Rocks and Regions, 3rd edn., p. 864. Wiley, New York (2012). (ISBN 978-0471152316)

    Google Scholar 

  13. Goudie, A.S.: Encyclopedia of Geomorphology volume 2 J–Z, p. 578. Routledge New York, New York (2004). (ISBN 9780415327381)

    Google Scholar 

  14. Goodman, R.E.: Methods of Geological Engineering in Discontinuous Rock. West Publishing, St. Paul (1976)

    Google Scholar 

  15. King, M., Myerand, L., Rezowalli, J.: Experimental studies of elastic-wave propagation in a columnar-jointed rock mass. Geophys. Prospect. 34, 1185–1199 (1986). https://doi.org/10.1111/j.1365-2478.1986.tb00522.x

    Article  Google Scholar 

  16. Berta, G.: Blasting-induced vibration in tunneling. Tunn. Undergr. Space Technol. 9, 175–187 (1994). https://doi.org/10.1016/0886-7798(94)90029-9

    Article  Google Scholar 

  17. Belland, J.M.: Structure as a control in rock fragmentation coal lake iron ore deposited. Can. Min. Metall. Bull. 59(647), 323–328 (1968)

    Google Scholar 

  18. Fourney, W.L.: Mechanisms of rock fragmentation in by blasting. In: Hudson, J.A. (ed.) Compressive Rock Engineering, Principles, Practice and Projects. Pergamon Press, Oxford (1993)

    Google Scholar 

  19. Paswan, R.K., Mohammad, S., Singh, P.K., Khare, H.S., Singh, B.K., Singh, R.J.: Controlled blasting at Parsa East & KantaBasan opencast mines for safe and efficient Mining operations. Ind. Min. Eng. J. 53(4), 7–17 (2014)

    Google Scholar 

  20. Jimeno, C.L., Jimeno, E., Carcedo, F.J.A.: drilling and Blasting of Rocks. A.A. Balkema Publishers, Rotterdam (1995)

    Google Scholar 

  21. Lewandowski, T.H., Luan Mai, V.K., Danell, R.E.: Influence of Discontinuities on Pre-splitting Effectiveness, Rock Fragmentation by Blasting – Fragblast5. B. Mohanty, Montreal (1996)

    Google Scholar 

  22. Ash, R.L.: The Influence of Geological Discontinuities on Rock Blasting. Ph.D. Thesis, University of Minnesota, Minneapolis (1973)

    Google Scholar 

  23. Van Zyl: An approach to incorporate rock fabric information in blast fragmentation investigation. In Proceedings of the 2nd Mini-Symposium on Explosives and Blasting research, Society of Explosives Engineers, georgia. pp. 81–89 (1986)

  24. Efremov, E.I., Komi, V.M., Myachina, N.I., Nikiforova, V.A., Rodak, S.N., Shelenok, V.V.: Influence of the structure of a medium on fragment size composition in blasting. Sov. Min. Sci. 16, 18–22 (1980). https://doi.org/10.1007/BF02504281

    Article  Google Scholar 

  25. Wua, Y.K., Haoa, H., Zhoub, Y.X., Chongb, K.: Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil Dyn. Earthq. Eng. 17, 407–412 (1998). https://doi.org/10.1016/S0267-7261(98)00030-X

    Article  Google Scholar 

  26. Singh, J., Verma, A.K., Banka, H., Singh, T.N., Maheshwar, S.: A study of soft computing models for prediction of longitudinal wave velocity. Arab J. Geosci. 9, 224 (2016). https://doi.org/10.1007/s12517-015-2115

    Article  Google Scholar 

  27. Jhanwar, J.C., Chakraborty, A.K., Ani Reddy, H.R., Jethwa, J.L.: Application ofair decks in production blasting to improve fragmentation and economics of an open pit mine. Geotech. Geol. Eng. J. 417, 37–57 (1999). https://doi.org/10.1023/A:1008899928839

    Article  Google Scholar 

  28. Jhanwar, J., Jethwa, J.: The use of air decks in production blasting in an open pit coal mine. J. Geotech. Geol. Eng. 18(4), 269–287 (2000)

    Article  Google Scholar 

  29. Park, D., Jeon, S.: Reduction of blast-induced vibration in the direction of tunneling using an Air-Deck at the bottom of a Blasthole. Int. J. Rock Mech. Min. Sci. 47(5), 752–761 (2010)

    Article  Google Scholar 

  30. Chi, E.A., Liang, K.S., Zhao, M.S.: Experimental study on vibration reduction of the hole bottom air space charging. J. China Coal Soc. 37(6), 944–950 (2012)

    Google Scholar 

  31. Abdall, M.: The Environmental Impacts of Air-Deck Blasting. University of New South Wales (2014)

    Google Scholar 

  32. Hayat, M.B., Alagha, L., Ali, D.: Air decks in surface blasting operations. J. Min. Sci. 55(6), 922–929 (2019)

    Article  Google Scholar 

  33. Roy, S., Singh, R.S.: Use of spacer aided initiation technique in solid blasting in Indian underground coal mines. J. Min. Tech. 120(1), 25–35 (2011)

    Article  Google Scholar 

  34. David, E., Siskind, Vigil, J., Stachura: Surface Mine Blasting. Proceedings: Bureau of Mines Technology Transfer Seminar. Chicago (1987)

  35. Sri Chandrahas, N., Choudhary, B.S., Vishnu Teja, M., Venkataramayya, M.S., Krishna Prasad, N.S.R.: XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data. Appl. Sci. 12(10), 5269 (2022). https://doi.org/10.3390/app12105269

    Article  Google Scholar 

  36. Singh, R., Kainthola, A., Singh, T.N.: Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 12(1), 40-45 22 (2012). https://doi.org/10.1016/j.asoc.2011.09.010

    Article  Google Scholar 

  37. Mishnaevsky, L.L., Jr.: Physical mechanisms of hard rock fragmentation under mechanical loading: A review. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(8), 763–766 (1995). https://doi.org/10.1016/0148-9062(95)00027-E

    Article  Google Scholar 

  38. Sayadi, A., Manojezi, M., Talebi, N., Khandelawal: A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and back break. J. Rock Mech. Geotech. Eng. 5, 318–324 (2013)

    Article  Google Scholar 

  39. Dindarloo, S.R.: Peak particle velocity prediction using support vector machines: A surface blasting case study. J. S. Afr. Inst. Min. Metall. 115, 637–643 (2015)

    Article  Google Scholar 

  40. Ebrahimi, E., Monjezi, M., Khalesi, M.R., Armaghani, D.J.: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bull. Eng. Geol. Environ. 75, 27–36 (2015)

    Article  Google Scholar 

  41. Monjezi, M., Bahrami, A., YazdianVarjani, A.: Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int. J. Rock Mech. Min. Sci. 47(3), 476–480 (2010). https://doi.org/10.1016/j.ijrmms.2009.09.008

    Article  Google Scholar 

  42. Shi, X.Z., Zhou, J., Wu, B., Huang, D., Wei, W.: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Trans. Nonferrous Met. Soc. China 22, 432–441 (2012). https://doi.org/10.1016/S1003-6326(11)61195-3

    Article  Google Scholar 

  43. Armaghani, D.J., Momeni, E., Abad, S.V.A.N.K., Khandelwal, M.: Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 74, 2845–2860 (2015)

    Article  Google Scholar 

  44. Armaghani, D.J., Hasanipanah, M., Bakhshandeh Amnieh, H., Mohamad, E.T.: Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Comput. Appl. 29, 457–465 (2018)

    Article  Google Scholar 

  45. Nguyen, H., Bui, X.-N., Bui, H.-B., Cuong, D.T.: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophys. (2019). https://doi.org/10.1007/s11600-019-00268-4

    Article  Google Scholar 

  46. Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P., Liu, P.: XGBoost optimized by adaptive particle swarm optimization for credit scoring. Hindawi Math. Probl. Eng. 2021, 18 (2021). https://doi.org/10.1155/2021/6655510. (Article ID 6655510)

    Article  Google Scholar 

  47. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    Google Scholar 

  48. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan (1995)

  49. Yang, Q., Chen, W.N., Deng, J.D.: A level-based learning swarm optimizer for large-scale optimization. IEEE Trans. Evol. Comput. 22(99), 578–594 (2018)

    Article  Google Scholar 

  50. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178. Springer, Berlin (2009)

  51. Fister, I., Yang, X.S., Brest, J., Fister Jr, I.: Memetic self-adaptive firefly algorithm. Swarm Intell. Bio-Inspired Comput.: Theory Appl., 73–102 (2013)

  52. Zhou, L., Ma, M., Ding, L., Tang, W.: Centroid opposition with a two-point full crossover for the partially attracted firefly algorithm. Soft Comput. 23, 12241–12254 (2019). https://doi.org/10.1007/s00500-019-04221-x

    Article  Google Scholar 

  53. Bayat, P., Monjezi, M., Rezakhah, M., Armaghani, D.J.: Artificial neural network and firefly algorithm for estimation and minimization of ground vibration induced by blasting in a mine. Nat. Resour. Res. 29, 4121–4132 (2020)

    Article  Google Scholar 

  54. Yang, H., Nikafshan Rad, H., Hasanipanah, M., Bakhshandeh Amnieh, H., Nekouie, A.: Prediction of vibration velocity generated in mine blasting using support vector regression improved by optimization algorithms. Nat. Resour. Res. 29, 807–830 (2020)

    Article  Google Scholar 

  55. Zhu, W., Nikafshan Rad, H., Hasanipanah, M.: A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting. Appl. Soft Comput. 108, 107434 (2021)

    Article  Google Scholar 

  56. Hasanipanah, M., Armaghani, D.J., Amnieh, H.B., Abd Majid, M.Z., Tahir, M.M.D.: Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput. Appl. 28(Supplement 1), 1043–1050 (2016)

    Google Scholar 

  57. Armaghani, D.J., Hajihassani, M., Mohamad, E.T., Marto, A., Noorani, S.A.: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab. J. Geosci. 7, 5383–5396 (2014)

    Article  Google Scholar 

  58. Hajihassani, M., Armaghani, D.J., Monjezi, M., Tonnizam, M.E., Marto, A.: Blast-induced air and ground-vibration prediction: A particle swarm optimization-based artificial neural network approach. Environ. Earth Sci. 74(4), 2799–2817 (2015)

    Article  Google Scholar 

  59. Saghatforoush, A., Monjezi, M., Shirani Faradonbeh, R., Armaghani, D.: Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Eng. Comput. 32(2), 255–266 (2016)

    Article  Google Scholar 

  60. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2022). (CrossRef)

    Article  Google Scholar 

  61. Chen, M., Liu, Q., Chen, S., Liu, Y., Zhang, C.-H., Liu,: R. XGBoost-based algorithm interpretation and application on post-fault transient stability status prediction of power system. IEEE Access 7, 13149–13158 (2019). (CrossRef)

    Article  Google Scholar 

  62. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28, 337–407 (2000)

    Article  Google Scholar 

  63. Chen, T.H.: T. Xgboost: Extreme Gradient Boosting; R Package Version 04-2 (2015). Available online: https://cran.microsoft.com

  64. Gao, W., Wang, W., Dimitrov, D., Wang, Y.: Nano properties analysis via fourth multiplicative ABC indicator calculating. Arab. J. Chem. 11, 793–801 (2018)

    Article  Google Scholar 

  65. Zhou, J., Li, C., Arslan, C.A., Hasanipanah, M., Amnieh, H.B.: Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00822

    Article  Google Scholar 

  66. Ezugwu, A.E., Akutsah, F.: Digital object identifier improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times. IEEE Accesses (2018). https://doi.org/10.1109/ACCESS.2018.2872110

    Article  Google Scholar 

  67. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. IJBIC 2, 78 (2010)

    Article  Google Scholar 

  68. Xie, C., Nguyen, H., Bui, X.N., Choi, Y., Zhou, J., Nguyen-Trang.T,: Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms. Geosci. Front. (2020). https://doi.org/10.1016/j.gsf.2020.11.005

    Article  Google Scholar 

  69. Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S.A., Qaleh, A.Z.A.: Prediction of blast produced ground vibration using particle swarm optimization. Eng. Comput. 33(2), 173–179 (2016)

    Article  Google Scholar 

  70. Gordan, B., Jahed Armaghani, D., Hajihassani, M., Monjezi, M.: Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 32(1), 85–97 (2016)

    Article  Google Scholar 

  71. Ghasemi, E., Kalhori, H., Bagherpour, R.: A new hybrid ANFIS–PSO model for prediction of peak particle velocity due to bench blasting. Eng. Comput. 32(4), 607–614 (2016)

    Article  Google Scholar 

  72. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, volume 43. New York, NY, USA: IEEE (1995)

Download references

Acknowledgements

I would like to express my heartfelt gratitude to my mentor, B.S. Choudhary, Associate Professor, IIT (ISM) Dhanbad, for meticulously tracking and adding his research inputs to this paper. I am always grateful to my college IIT (ISM) Dhanbad. I would like to express my gratitude to the Principal, Director, and management of Malla Reddy Engineering College, Hyderabad for allocating adequate time to carry out research.

Funding

This research received no external funding. Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, software and writing— original draft preparation has been conducted by N Sri Chandrahas.; supervision and formal analysis have been conducted by BS Choudhary., writing—review and editing done by M.S.Venkataramayya. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to N. Sri Chandrahas.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrahas, N.S., Choudhary, B.S. & Venkataramayya, M.S. Competitive algorithm to balance and predict blasting outcomes using measured field data sets. Comput Geosci 27, 1087–1110 (2023). https://doi.org/10.1007/s10596-023-10254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10254-x

Keywords

Navigation