Skip to main content

Advertisement

Log in

Deep learning-aided image-oriented history matching of geophysical data

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Various types of geophysical measurements have been made available to illuminate different characteristics of subsurface reservoir formations. It becomes crucial to both efficiently and effectively utilize the information contained in these measurements for enhanced reservoir characterization and more informative decision-making support. To address the problem, image-oriented history matching approaches were proposed, which have shown promising results in efficiently assimilating multiple types of geophysical measurements. Relying on the interpretability of geophysical measurements, image-oriented strategies seek to match the extracted features or patterns (e.g., water front positions from the inverted saturation field) instead of the original data in the model update step. Consequently, the quality of the extracted features directly impacts the performance of these methods. However, extracting reliable features from related geophysical data is not straightforward. It requires not only in-depth domain knowledge but also appropriate image processing techniques. This study explores the use of deep learning (DL) based image segmentation techniques as an alternative to assist the feature extraction for an image-oriented ensemble-based history matching workflow. Accounting for the special characteristics of the considered application, a fast unsupervised DL segmentation model based on the convolutional neural network (CNN) is used together with an image denoising algorithm. The developed workflow separates the history matching of geophysical data into two sequential steps. It starts with a (joint) geophysical inversion step for saturation mapping, followed by a featured-oriented assimilation step to match the inverted saturation field, in which water front positions are extracted using the DL-based segmentation model. We test the proposed workflow on a synthetic reservoir model to history match electromagnetic (EM) and seismic data, which illustrates its promising performance in extracting relevant information from the data for efficient history matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data generated or analysed during this study are available from the corresponding authors on reasonable request.

Abbreviations

CNN:

Convolutional neural network

DL:

Deep learning

EM:

Electromagnetic

EnKF:

Ensemble Kalman filter

HM:

History matching

NLM:

Non-local means denoising

SHM:

Seismic history matching

\(\mathbf{c}\) :

Binary map

\({\mathbf{d}}_{obs}\) :

Observed data

\({\mathbf{d}}_{sim }\) :

Simulated data

\({\mathbf{D}}_{obs}\) :

Ensemble of perturbed observations

\(\varDelta \mathbf{D}\) :

Matrix of data misfit

\(f\left(\cdot \right)\)  :

Feature segmentation operator

\(g\left(\cdot \right)\)  :

Forward model mapping model parameters to predicted data

\(h\left(\cdot \right)\)  :

Dissimilarity measure

\(\mathbf{K}\) :

Coefficient matrix similar to the Kalman gain

\(l\) :

Loss function

\(\mathbf{L}\) :

Localization matrix

\(\mathbf{M}\) :

Ensemble of model realizations

\({\text{N}}_{d}\) :

Number of data

\({\text{N}}_{e}\) :

Ensemble size

\({\text{N}}_{m}\) :

Number of model parameters

\({\text{N}}_{s}\) :

Training dataset size

\({\mathbf{r}}^{{\prime }}\) :

Normalized response map

\({\text{s}}_{NLM}\) :

Denoised estimate by NLM

\(std\) :

Standard deviation

\({\mathbf{T}}_{*\to *}\) :

Directed distance maps

\(w\left(\cdot \right)\)  :

NLM weight

\(\mathbf{x}\) :

Input image

\({\lambda }_{\mathcal{l}}\) :

Tuning parameter for the iterative ensemble smoother

\({\upsigma }\) :

Degree of smoothing for NLM

\(\mu\) :

Weighting parameter in CNN loss function

References

  1. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511535642

  2. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: A review. Comput. Geosci. 15, 185–221 (2011). https://doi.org/10.1007/s10596-010-9194-2

    Article  Google Scholar 

  3. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: The ensemble Kalman filter in reservoir engineering–a review. SPE J. 14, 393–412 (2009). https://doi.org/10.2118/117274-PA

    Article  Google Scholar 

  4. Hoteit, I., Pham, D.T., Gharamti, M.E., Luo, X.: Mitigating observation perturbation sampling errors in the stochastic EnKF. Mon. Weather Rev. 143, 2918–2936 (2015). https://doi.org/10.1175/MWR-D-14-00088.1

    Article  Google Scholar 

  5. Abadpour, A., Adejare, M., Chugunova, T., Mathieu, H., Haller, N.: Integrated geo-modeling and ensemble history matching of complex fractured carbonate and deep offshore turbidite fields, generation of several geologically coherent solutions using ensemble methods. In: Abu Dhabi International Petroleum Exhibition & Conference (2018). https://doi.org/10.2118/193028-MS

  6. Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17, 244–256 (2014). https://doi.org/10.2118/164902-PA

    Article  Google Scholar 

  7. Haugen, V., Nœvdal, G., Natvik, L.J., Evensen, G., Berg, A.M., Flornes, K.M.: History matching using the ensemble Kalman filter on a North Sea field case. SPE J. 13, 382–391 (2008). https://doi.org/10.2118/102430-PA

    Article  Google Scholar 

  8. Zhang, Y., Oliver, D.S.: History matching using the ensemble Kalman filter with multiscale parameterization: A field case study. SPE J. 16, 307–317 (2011). https://doi.org/10.2118/118879-PA

    Article  Google Scholar 

  9. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013). https://doi.org/10.1016/j.cageo.2012.03.011

    Article  Google Scholar 

  10. Luo, X., Stordal, A.S., Lorentzen, R.J., Nævdal, G.: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: Theory and applications. SPE J. 20, 962–982 (2015). https://doi.org/10.1086/309714

    Article  Google Scholar 

  11. Chen, Y., Oliver, D.S.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013). https://doi.org/10.1007/s10596-013-9351-5

    Article  Google Scholar 

  12. Zhang, Y., Oliver, D.S., Chen, Y., Skaug, H.J.: Data assimilation by use of the iterative ensemble smoother for 2D facies models. SPE J. 20, 169–185 (2015). https://doi.org/10.2118/170248-pa

    Article  Google Scholar 

  13. Hoteit, I., Luo, X., Pham, D.-T.: Particle Kalman filtering: A nonlinear bayesian framework for ensemble Kalman filters. Mon. Weather Rev. 140, 528–542 (2012). https://doi.org/10.1175/2011MWR3640.1

    Article  Google Scholar 

  14. Astrakova, A., Oliver, D.S.: Conditioning truncated pluri-gaussian models to facies observations in ensemble-kalman-based data assimilation. Math. Geosci. 47, 345–367 (2015). https://doi.org/10.1007/s11004-014-9532-3

    Article  Google Scholar 

  15. Lorentzen, R.J., Ncevdal, G., Shafieirad, A.: Estimating facies fields by use of the ensemble kalman filter and distance functions-applied to shallow-marine environments. SPE J. 18, 146–158 (2013). https://doi.org/10.2118/143031-pa

    Article  Google Scholar 

  16. Liu, B., Ait-El-Fquih, B., Hoteit, I.: Efficient kernel-based ensemble gaussian mixture filtering. Mon. Weather Rev. 144, 781–800 (2016). https://doi.org/10.1175/MWR-D-14-00292.1

    Article  Google Scholar 

  17. Katterbauer, K., Hoteit, I., Sun, S.: Synergizing crosswell seismic and electromagnetic techniques for enhancing reservoir characterization. SPE J. 21, 909–927 (2016). https://doi.org/10.2118/174559-pa

    Article  Google Scholar 

  18. Lorentzen, R.J., Luo, X., Bhakta, T., Valestrand, R.: History matching the full norne field model using seismic and production data. SPE J. 1–16 (2019). https://doi.org/10.2118/194205-pa

  19. Zhang, Y., Hoteit, I., Katterbauer, K., Maucec, M., Marsala, A.F.: Feature-based ensemble history matching in a fractured carbonate reservoir using time-lapse deep electromagnetic tomography. J. Pet. Sci. Eng. 208, 109259 (2022). https://doi.org/10.1016/j.petrol.2021.109259

    Article  Google Scholar 

  20. Oliver, D.S., Fossum, K., Bhakta, T., Sandø, I., Nævdal, G., Lorentzen, R.J.: 4D seismic history matching. J. Pet. Sci. Eng. 207, 109119 (2021). https://doi.org/10.1016/j.petrol.2021.109119

    Article  Google Scholar 

  21. Zhang, Y., Vossepoel, F.C., Hoteit, I.: Efficient assimilation of crosswell electromagnetic data using an ensemble-based history-matching framework. SPE J. 25, 119–138 (2020). https://doi.org/10.2118/193808-PA

    Article  Google Scholar 

  22. Zhang, Y., Leeuwenburgh, O.: Image-oriented distance parameterization for ensemble-based seismic history matching. Comput. Geosci. 21, 713–731 (2017). https://doi.org/10.1007/s10596-017-9652-1

    Article  Google Scholar 

  23. Trani, M., Arts, R., Leeuwenburgh, O.: Seismic history matching of fluid fronts using the ensemble Kalman filter. SPE J. 18, 159–171 (2013). https://doi.org/10.2118/163043-PA

    Article  Google Scholar 

  24. Obidegwu, D., Chassagne, R., MacBeth, C.: Seismic assisted history matching using binary maps. J. Nat. Gas Sci. Eng. 42, 69–84 (2017). https://doi.org/10.1016/j.jngse.2017.03.001

    Article  Google Scholar 

  25. Xiao, C., Leeuwenburgh, O., Lin, H.X., Heemink, A.: Conditioning of deep-learning surrogate models to image data with application to reservoir characterization. Knowl. Based Syst. 220, 106956 (2021). https://doi.org/10.1016/j.knosys.2021.106956

    Article  Google Scholar 

  26. Tillier, E., Veiga, S., Da, Derfoul, R.: Appropriate formulation of the objective function for the history matching of seismic attributes. Comput. Geosci. 51, 64–73 (2013). https://doi.org/10.1016/j.cageo.2012.07.031

    Article  Google Scholar 

  27. Derfoul, R., Da Veiga, S., Gout, C., Le Guyader, C., Tillier, E.: Image processing tools for better incorporation of 4D seismic data into reservoir models. J. Comput. Appl. Math. 240, 111–122 (2013). https://doi.org/10.1016/j.cam.2012.08.022

    Article  Google Scholar 

  28. Zhang, Y., Hoteit, I.: Feature-oriented joint time-lapse seismic and electromagnetic history matching using ensemble methods. SPE J. 26, 1341–1365 (2021). https://doi.org/10.2118/203847-PA

    Article  Google Scholar 

  29. Moorkamp, M.: Integrating electromagnetic data with other geophysical observations for enhanced imaging of the earth: A tutorial and review. Surv. Geophys. 38, 935–962 (2017). https://doi.org/10.1007/s10712-017-9413-7

    Article  Google Scholar 

  30. Katterbauer, K., Arango, S., Sun, S., Hoteit, I.: Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification. J. Pet. Sci. Eng. 128, 160–176 (2015). https://doi.org/10.1016/j.petrol.2015.02.016

    Article  Google Scholar 

  31. Ghosh, S., Das, N., Das, I., Maulik, U.: Understanding deep learning techniques for image segmentation. ACM Comput. Surv. 52, 1–58 (2019). https://doi.org/10.1145/3329784

    Article  Google Scholar 

  32. Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., Oza, H.: Application of machine learning and artificial intelligence in oil and gas industry. Pet. Res. 6, 379–391 (2021). https://doi.org/10.1016/j.ptlrs.2021.05.009

    Article  Google Scholar 

  33. Otchere, D.A., Arbi Ganat, T.O., Gholami, R., Ridha, S.: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models. J. Pet. Sci. Eng. 200, 108182 (2021). https://doi.org/10.1016/j.petrol.2020.108182

    Article  Google Scholar 

  34. Ertekin, T., Sun, Q.: Artificial intelligence applications in reservoir engineering: A status check. Energies (Basel). 12 (2019). https://doi.org/10.3390/en12152897

  35. Cheraghi, Y., Kord, S., Mashayekhizadeh, V.: Application of machine learning techniques for selecting the most suitable enhanced oil recovery method; challenges and opportunities. J. Pet. Sci. Eng 205, 108761 (2021). https://doi.org/10.1016/j.petrol.2021.108761

    Article  Google Scholar 

  36. Wang, G., Ju, Y., Carr, T.R., Li, C., Cheng, G.: Application of Artificial Intelligence on Black Shale Lithofacies Prediction in Marcellus Shale, Appalachian Basin. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference (2014). https://doi.org/10.15530/URTEC-2014-1935021

  37. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 8828, 1–20 (2021). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  38. Dell’Aversana, P., Bernasconi, G., Miotti, F., Rovetta, D.: Joint inversion of rock properties from sonic, resistivity and density well-log measurements. Geophys. Prospect. 59, 1144–1154 (2011). https://doi.org/10.1111/j.1365-2478.2011.00996.x

    Article  Google Scholar 

  39. Zhang, Y., Oliver, D.S.: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci. 42, 327–345 (2010). https://doi.org/10.1007/s11004-010-9267-8

    Article  Google Scholar 

  40. Gassmann, F.: Elastic waves through a packing of spheres. Geophysics 16, 673–685 (1951)

    Article  Google Scholar 

  41. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146, 54–62 (1942). https://doi.org/10.2118/942054-G

    Article  Google Scholar 

  42. Da Silva, C., Herrmann, F.: A unified 2D/3D large-scale software environment for nonlinear inverse problems. ACM Trans. Math. Softw. 45, 7 (2019). https://doi.org/10.1145/3291042

    Article  Google Scholar 

  43. Mulder, W.A.: A multigrid solver for 3D electromagnetic diffusion. Geophys. Prospect. 54, 633–649 (2006)

    Article  Google Scholar 

  44. Plessix, R.E., Mulder, W.A.: Resistivity imaging with controlled-source electromagnetic data: Depth and data weighting. Inverse Probl. 24, 034012 (2008). https://doi.org/10.1088/0266-5611/24/3/034012

    Article  Google Scholar 

  45. Hassouna, M.S., Farag, A.A.: Multistencils fast marching methods: A highly accurate solution to the Eikonal equation on cartesian domains. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1563–1574 (2007). https://doi.org/10.1109/TPAMI.2007.1154

    Article  Google Scholar 

  46. Gillberg, T., Hjelle, Ã., Bruaset, A.M.: Accuracy and efficiency of stencils for the eikonal equation in earth modelling. Comput. Geosci. 16, 933–952 (2012). https://doi.org/10.1007/s10596-012-9296-0

    Article  Google Scholar 

  47. Hao, S., Zhou, Y., Guo, Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing 406, 302–321 (2020). https://doi.org/10.1016/j.neucom.2019.11.118

    Article  Google Scholar 

  48. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. Proceedings – 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. II, 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38

  49. Kim, W., Kanezaki, A., Tanaka, M.: Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans. Image Process. 29, 8055–8068 (2020). https://doi.org/10.1109/TIP.2020.3011269

    Article  Google Scholar 

  50. Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)

    Article  Google Scholar 

  51. Sabottke, C.F., Spieler, B.M.: The effect of image resolution on deep learning in radiography. Radiol. Artif. Intell. 2 (2020). https://doi.org/10.1148/ryai.2019190015

  52. Thambawita, V., Strümke, I., Hicks, S.A., Halvorsen, P., Parasa, S., Riegler, M.A.: Impact of image resolution on deep learning performance in endoscopy image classification: An experimental study using a large dataset of endoscopic images. Diagnostics. 11 (2021). https://doi.org/10.3390/diagnostics11122183

Download references

Acknowledgements

Support of this work was provided by the office of sponsored research at King Abdullah University of Science and Technology and by the research project titled as “AI aided probabilistic reservoir characterization using ensemble history matching and big data” (Grant No. RGC/3/4290-01-01) funded by Saudi Aramco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Katterbauer, K., Zhang, T. et al. Deep learning-aided image-oriented history matching of geophysical data. Comput Geosci 27, 591–604 (2023). https://doi.org/10.1007/s10596-023-10227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10227-0

Keywords

Navigation