Skip to main content

Advertisement

Log in

The use of stochastic geomechanical properties of potential failure plane and fracture networks for realistic modelling of rock mass behaviour: A synthetic rock mass modelling (SRM) study

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Almost all conventional discrete fracture network (DFN) models embedded within rock masses are discontinuities with zero tensile strength and mean values of geomechanical parameters. However, the spatial variability and networks of weak and strong potential failure planes and discontinuities have a significant effect on rock mass behaviour. Therefore, the geomechanical heterogeneous nature of potential failure planes and fractures, along with their geometrical parameters, is crucial for understanding rock mass behaviour. To bridge this gap in research, this paper provides a methodology for stochastic modelling of potential failure plane and discontinuity geomechanical properties effects on rock mass behaviour using a combination of DFN and discrete element modelling approach. Due to the uncertainties and distributed geomechanical characteristics of DFN, fracturing may occur through an intact part, DFN, or a combination of intact and DFN. A parametric study was performed to investigate the influence of friction angle, normal and shear stiffness, cohesion, and tensile strength of potential failure planes and discontinuities. The results indicate that the proposed stochastic geomechanical DFN model gives more realistic rock mass strengths and failure patterns compared to the conventional DFN framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandis, S.C., Lumsden, A.C., Barton, N.R.: Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20(6), 249–268 (1983)

    Article  Google Scholar 

  2. Bewick, R.P., Kaiser, P.K., Amann, F.: Strength of massive to moderately jointed hard rock masses. J. Rock Mech. Geotech. Eng. 11(3), 562–575 (2019). https://doi.org/10.1016/j.jrmge.2018.10.003

    Article  Google Scholar 

  3. Brzovic, A., Herrera, S.: Assessing geological vein size and intensity using Discrete Fracture Network modelling at the El Teniente Mine, Chile. In: 45th US Rock Mechanics/Geomechanics Symposium (2011).

  4. Brzovic, A., Schachter, P., De Los Santos, C., Vallejos, J., Mas Ivars, D.: Characterization and synthetic simulations to determine rock mass behaviour at the El Teniente Mine, Chile. Part I. In: Proceedings of the 3rd International Symposium on Block and Sublevel Caving, Santiago, Chile 171–178 (2014).

  5. Brzovic, A., Villaescusa, E.: Rock mass characterization and assessment of block-forming geological discontinuities during caving of primary copper ore at the El Teniente mine, Chile. Int. J. Rock Mech. Min. Sci. 44(4), 565–583 (2007). https://doi.org/10.1016/j.ijrmms.2006.09.010

    Article  Google Scholar 

  6. Cruz, T.V.G., Pierce, M.E.: A 3DEC model for heavily veined massive rock masses, American Rock Mechanics Association. 48th US Rock Mechanics/Geomechanics Symposium held in Minneapolis (2014), MN, USA, 1–4 June.

  7. Day JJ.: The influence of healed intrablock rockmass structure on the behaviour of deep excavations in complex rockmasses. Doctoral dissertation, Queen’s University, Canada; (2016).

  8. Day, J.J., Diederichs, M.S., Hutchinson, D.J.: New direct shear testing protocols and analyses for fractures and healed intrablock rockmass discontinuities. Eng. Geol. 229, 53–72 (2017). https://doi.org/10.1016/j.enggeo.2017.08.027

    Article  Google Scholar 

  9. Debecker, B., Vervoort, A.: Two-dimensional discrete element simulations of the fracture behaviour of slate. Int. J. Rock Mech. Min. Sci. 61, 161–170 (2013). https://doi.org/10.1016/j.ijrmms.2013.02.004

    Article  Google Scholar 

  10. Debecker, B., Tavallali, A., Vervoort, A.: Probability distribution of rock properties: effect on the rock behaviour. In 6th International Symposium on Ground Support Min. Civil Eng. Construct; (2008) 357–368.

  11. Evans, R.H., Marathe, M.S.: Microcracking and stress-strain curves for concrete in tension. Matériaux et Construction. 1(1), 61–64 (1968)

    Article  Google Scholar 

  12. Farahmand, K., Vazaios, I., Diederichs, M.S., Vlachopoulos, N.: Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach. Comput. Geotech. 95, 162–179 (2018). https://doi.org/10.1016/j.compgeo.2017.10.002

    Article  Google Scholar 

  13. Fathipour-Azar, H., Wang, J., Jalali, S.M., Torabi, S.R.: Numerical modeling of geomaterial fracture using a cohesive crack model in grain-based DEM. Comput. Part. Mech. 7(4), 645–654 (2020). https://doi.org/10.1007/s40571-019-00295-4

    Article  Google Scholar 

  14. Fathipour-Azar, H.: Machine learning-assisted distinct element model calibration: ANFIS, SVM, GPR, and MARS approaches. Acta Geotech. 17, 1207–1217 (2022). https://doi.org/10.1007/s11440-021-01303-9

    Article  Google Scholar 

  15. Gao, F.Q., Kang, H.P.: Effects of pre-existing discontinuities on the residual strength of rock mass–Insight from a discrete element method simulation. J. Struct. Geol. 85, 40–50 (2016). https://doi.org/10.1016/j.jsg.2016.02.010

    Article  Google Scholar 

  16. Hamdi, P., Stead, D., Elmo, D.: Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach. J. Rock. Mech. Geotech. Eng. 7(6), 609–625 (2015). https://doi.org/10.1016/j.jrmge.2015.07.005

    Article  Google Scholar 

  17. Itasca. Itasca Consulting Group Inc., The Universal Distinct Element Code (UDEC), Ver. 6.0., Minneapolis, USA; (2014).

  18. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., Cundall, P.A.: The synthetic rock mass approach for jointed rock mass modelling. Int. J. Rock Mech. Min. Sci. 48(2), 219–244 (2011). https://doi.org/10.1016/j.ijrmms.2010.11.014

    Article  Google Scholar 

  19. Jakubec, J., Board, M., Campbell, R., Pierce, M., Zaro, D.: Rock mass strength estimate—Chuquicamata case study. In: Proceedings MassMin; (2012) 10–4.

  20. Jakubec, J.: Role of defects in rock mass classification. In: Ground Support 2013: Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction. Australian Centre for Geomechanics; (2013) 337–344.

  21. Jing, L., Stephansson, O.: Fundamentals of discrete element methods for rock engineering: theory and applications. Elsevier; (2007).

  22. Kovari, K., Tisa, A., Einstein, H.H., Franklin, J.A.: Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20(6), 285–290 (1983)

    Article  Google Scholar 

  23. Laubscher, D.H., Jakubec, J.: The MRMR rock mass classification for jointed rock masses. Underground Mining Methods: Engineering Fundamentals and International Case Studies, WA Hustrulid and RL Bullock (eds) Society of Mining Metallurgy and Exploration, SMME; (2001) 475–81.

  24. Lei, Q., Latham, J.P., Tsang, C.F.: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Comput. Geotech. 85, 151–176 (2017). https://doi.org/10.1016/j.compgeo.2016.12.024

    Article  Google Scholar 

  25. Lorig, L.J., Darcel, C., Damjanac, B., Pierce, M., Billaux, D.: Application of discrete fracture networks in mining and civil geomechanics. Min. Technol. 124(4), 239–254 (2015). https://doi.org/10.1179/1743286315Y.0000000021

    Article  Google Scholar 

  26. Lu, Y., Martin, C.D., Lan, H.: Strength of intact rock containing flaws. In: 47th US Rock Mechanics/Geomechanics Symposium; (2013).

  27. Mayer, J.M., Stead, D.: Exploration into the causes of uncertainty in UDEC grain boundary models. Comput. Geotech. 82, 110–123 (2017). https://doi.org/10.1016/j.compgeo.2016.10.003

    Article  Google Scholar 

  28. Munjiza, A.A.: The combined finite-discrete element method. John Wiley & Sons; (2004).

  29. Pierce, M., Gaida, M., DeGagne, D.: Estimation of rock block strength. InRockEng09. In: Proceedings 3rd CANUS Rock Mechanics Symposium, Toronto; (2009).

  30. Pine, R.J., Coggan, J.S., Flynn, Z.N., Elmo, D.: The development of a new numerical modelling approach for naturally fractured rock masses. Rock Mech. Rock Eng. 39(5), 395–419 (2006). https://doi.org/10.1007/s00603-006-0083-x

    Article  Google Scholar 

  31. Pine, R.J., Owen, D.R., Coggan, J.S., Rance, J.M.: A new discrete fracture modelling approach for rock masses. Geotechnique 57(9), 757–766 (2007). https://doi.org/10.1680/geot.2007.57.9.757

    Article  Google Scholar 

  32. Shang, J., Hencher, S.R., West, L.J.: Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mech. Rock Eng. 49(11), 4213–4225 (2016). https://doi.org/10.1007/s00603-016-1041-x

    Article  Google Scholar 

  33. Sinha, S., Walton, G.: Investigation of pillar damage mechanisms and rock-support interaction using Bonded Block Models. Int. J. Rock Mech. Min. Sci. 138, 104652 (2021). https://doi.org/10.1016/j.ijrmms.2021.10465

    Article  Google Scholar 

  34. Staub, I., Fredriksson, A., Outters, N.: Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach. Swedish Nuclear Fuel and Waste Management Co.; (2002).

  35. Stavrou, A., Vazaios, I., Murphy, W., Vlachopoulos, N.: Refined approaches for estimating the strength of rock blocks. Geotech. Geol. Eng. 37(6), 5409–5439 (2019). https://doi.org/10.1007/s10706-019-00989-9

    Article  Google Scholar 

  36. Tang, C.A., Lü, H.Y.: The DDD method based on combination of RFPA and DDA. Frontiers of Discontinuous Numerical Methods and Practical Simulations in Engineering and Disaster Prevention. London: Taylor & Francis Group; (2013) 105–2.

  37. Tatone, B.S.: Investigating the evolution of rock discontinuity asperity degradation and void space morphology under direct shear. Doctoral dissertation, University of Toronto, Canada; (2014).

  38. Tavallali, A., Vervoort, A.: Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 47(2), 313–322 (2010). https://doi.org/10.1016/j.ijrmms.2010.01.001

    Article  Google Scholar 

  39. Turichshev, A., Hadjigeorgiou, J.: Development of synthetic rock mass bonded block models to simulate the behaviour of intact veined rock. Geotech. Geol. Eng. 35(1), 313–335 (2017a). https://doi.org/10.1007/s10706-016-0108-5

    Article  Google Scholar 

  40. Turichshev, A., Hadjigeorgiou, J.: Quantifying the effects of vein mineralogy, thickness, and orientation on the strength of intact veined rock. Eng. Geol. 226, 199–207 (2017b). https://doi.org/10.1016/j.enggeo.2017.06.009

    Article  Google Scholar 

  41. Vallejos, J.A., Brzovic, A., Lopez, C., Bouzeran, L., Ivars, D.M.: Application of the Synthetic Rock Mass approach to characterize rock mass behavior at the El Teniente Mine, Chile. In: FLAC/DEM Symposium, Minneapolis; (2013).

  42. Vallejos, J.A., Suzuki, K., Brzovic, A., Ivars, D.M.: Application of synthetic rock mass modeling to veined core-size samples. Int. J. Rock Mech. Min. Sci. 81, 47–61 (2016). https://doi.org/10.1016/j.ijrmms.2015.11.003

    Article  Google Scholar 

  43. Vervoort, A., Debecker, B., Lysebetten, G.V.: Discrete Simulation of Fracturing and Failure of Rock Samples. InInternational Conference on Discrete Element Methods. Springer, Singapore; (2016) 855–862.

  44. Virgo, S., Abe, S., Urai, J.L.: The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing. J. Geophys. Res. Solid Earth 119(12), 8708–8727 (2014). https://doi.org/10.1002/2014JB011520

    Article  Google Scholar 

  45. Vyazmensky, A., Stead, D., Elmo, D., Moss, A.: Numerical analysis of block caving-induced instability in large open pit slopes: a finite element/discrete element approach. Rock Mech. Rock Eng. 43(1), 21–39 (2010). https://doi.org/10.1007/s00603-009-0035-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Fathipour‑Azar.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathipour‑Azar, H., Wang, J., Jalali, S.E. et al. The use of stochastic geomechanical properties of potential failure plane and fracture networks for realistic modelling of rock mass behaviour: A synthetic rock mass modelling (SRM) study. Comput Geosci 27, 391–406 (2023). https://doi.org/10.1007/s10596-023-10205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10205-6

Keywords

Navigation