Skip to main content

Probability elicitation using geostatistics in hydrocarbon exploration

Abstract

The exploratory phase of a hydrocarbon field is a period when decision-supporting information is scarce while the drilling stakes are high. Each new prospect drilled brings more knowledge about the area and might reveal reserves, hence choosing such prospect is essential for value creation. Drilling decisions must be made under uncertainty as the available geological information is limited and probability elicitation from geoscience experts is key in this process. This work proposes a novel use of geostatistics to help experts elicit geological probabilities more objectively, especially useful during the exploratory phase. The approach is simpler, more consistent with geologic knowledge, more comfortable for geoscientists to use and, more comprehensive for decision-makers to follow when compared to traditional methods. It is also flexible by working with any amount and type of information available. The workflow takes as input conceptual models describing the geology and uses geostatistics to generate spatial variability of geological properties in the vicinity of potential drilling prospects. The output is stochastic realizations which are processed into a joint probability distribution (JPD) containing all conditional probabilities of the process. Input models are interactively changed until the JPD satisfactory represents the expert’s beliefs. A 2D, yet realistic, implementation of the workflow is used as a proof of concept, demonstrating that even simple modeling might suffice for decision-making support. Derivative versions of the JPD are created and their effect on the decision process of selecting the drilling sequence is assessed. The findings from the method application suggest ways to define the input parameters by observing how they affect the JPD and the decision process.

Data availability

The datasets generated during and/or analyzed during the current study are available in Morosov, Andre Luis (2021), “Dataset Used in the Article: Probability Elicitation Using Geostatistics in Hydrocarbon Exploration”, Mendeley Data, V1, doi: https://doi.org/10.17632/5ndvnh6ffm.1.

References

  1. Bickel, J., Smith, J.: Optimal sequential exploration: a binary learning model. Decis. Anal. 3(1), 16–32 (2006). https://doi.org/10.1287/deca.1050.0052

    Article  Google Scholar 

  2. Bickel, J.E., Smith, J.E., Meyer, J.L.: Modeling dependence among geologic risks in sequential exploration decisions. SPE Res. Eval. Eng. 11, 352–361 (2008). https://doi.org/10.2118/102369-PA

    Article  Google Scholar 

  3. Brown, D., Smith, J.: Optimal sequential exploration: bandits, clairvoyants, and wildcats. Oper. Res. 60(2), 262–274 (2013). https://doi.org/10.1287/opre.2013.1164

    Article  Google Scholar 

  4. Jafarizadeh, B., Bratvold, R.: Sequential exploration: valuation with geological dependencies and uncertain oil prices. SPE J. 25, 2401–2417 (2020). https://doi.org/10.2118/202470-PA

    Article  Google Scholar 

  5. Martinelli, G., Eidsvik, J.: Dynamic exploration designs for graphical models using clustering with applications to petroleum exploration. Knowl.-Based Syst. 58, 113–126 (2014). https://doi.org/10.1016/j.knosys.2013.08.020

    Article  Google Scholar 

  6. Martinelli, G., Eidsvik, J., Hauge, R.: Dynamic decision making for graphical models applied to oil exploration. Eur. J. Oper. Res. 230(3), 688–702 (2013). https://doi.org/10.1016/j.ejor.2013.04.057

    Article  Google Scholar 

  7. Martinelli, G., Eidsvik, J., Hokstad, K., Hauge, R.: Strategies for petroleum exploration on the basis of Bayesian networks: a case study. SPE J. 19, 564–575 (2014). https://doi.org/10.2118/159722-PA

    Article  Google Scholar 

  8. van Wees, J.D., Mijnlieff, H., Lutgert, J., Breunese, J., Bos, C., Rosenkranz, P., Neele, F.: A Bayesian belief network approach for assessing the impact of exploration prospect interdependency: an application to predict gas discoveries in the Netherlands. AAPG Bull. 92(10), 1315–1336 (2008). https://doi.org/10.1306/06040808067

    Article  Google Scholar 

  9. Dias, L. C., Morton, A., & Quigley, J. (2018). Elicitation. Springer International Publishing. MR3700912. Doi: https://doi.org/10.1007/978-3-319-65052-4, 1(2), 3

  10. Garthwaite, P.H., Kadane, J.B., O’Hagan, A.: Statistical methods for eliciting probability distributions. J. Am. Stat. Assoc. 100(470), 680–701 (2005). https://doi.org/10.1198/016214505000000105

    Article  Google Scholar 

  11. McNamee, P., Celona, J.N.: Decision Analysis for the Professional. SmartOrg, Incorporated (2007)

    Google Scholar 

  12. Jaynes, E.T.: On the rationale of maximum-entropy methods. Proc. IEEE. 70(9), 939–952 (1982). https://doi.org/10.1109/PROC.1982.12425

    Article  Google Scholar 

  13. Abbas, A.E.: Entropy methods for joint distributions in decision analysis. IEEE Trans. Eng. Manag. 53(1), 146–159 (2006). https://doi.org/10.1109/TEM.2005.861803

    Article  Google Scholar 

  14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  Google Scholar 

  15. Martinelli, G., Eidsvik, J., Hauge, R., Forland, M.: Bayesian networks for prospect analysis in the North Sea. AAPG Bull. 95, 1423–1442 (2011). https://doi.org/10.1306/01031110110

    Article  Google Scholar 

  16. Martinelli, G., Eidsvik, J., Rekstad, S., Sinding-Larsen, R., Mukerji, T.: Building Bayesian networks from basin-modelling scenarios for improved geological decision making. Petrol. Geosci. 19, 289–304 (2013). https://doi.org/10.1144/petgeo2012-057

    Article  Google Scholar 

  17. RamaRao, B.S., LaVenue, A.M., De Marsily, G., Marietta, M.G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments. Water Resour. Res. 31(3), 475–493 (1995). https://doi.org/10.1029/94WR02258

    Article  Google Scholar 

  18. Willigers, B. J., Begg, S., R. B. Bratvold. Combining Geostatistics With Bayesian Updating to Continually Optimize Drilling Strategy in Shale Gas Plays. Paper presented at the EAGE Annual Conference & Exhibition incorporating SPE Europec, London, UK. https://doi.org/10.2118/164816-MS (2013)

  19. Patil, A.P., Gething, P.W., Piel, F.B., Hay, S.I.: Bayesian geostatistics in health cartography: the perspective of malaria. Trends Parasitol. 27(6), 246–253 (2011). https://doi.org/10.1016/j.pt.2011.01.003

    Article  Google Scholar 

  20. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 52(6), 119–139 (1951)

    Google Scholar 

  21. Mariethoz, G., Caers, J.: Multiple-Point Geostatistics: Stochastic Modeling with Training Images. Wiley (2014)

    Book  Google Scholar 

  22. Pyrcz, M.J., Deutsch, C.V.: Geostatistical Reservoir Modeling. Oxford University Press (2014)

    Google Scholar 

  23. Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS: a User’s Guide. Cambridge University Press (2009)

    Book  Google Scholar 

  24. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. Comput. Speech Lang. 13(4), 359–394 (1999). https://doi.org/10.1006/csla.1999.0128

    Article  Google Scholar 

  25. Bratvold, R.B.. B., Begg, S.H.. H., Rasheva, S.: A New Approach to Uncertainty Quantification for Decision Making. Paper presented at the SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, USA. https://doi.org/10.2118/130157-MS (2010)

  26. Jebara, T.: Discriminative, generative and imitative learning (Doctoral dissertation, PhD thesis, Media laboratory, MIT) (2002)

  27. Ng, A. Y., Jordan, M. I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Advances in Neural Information Processing Systems (pp. 841–848) (2002)

  28. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling Tabular data using Conditional GAN. arXiv preprint arXiv:1907.00503 (2019)

  29. Allen, P. A., & Allen, J. R. (2013). Basin Analysis: Principles and Application to Petroleum Play Assessment. Wiley

  30. Maharaja, A., Journel, A. G.: Hierarchical simulation of multiple-facies reservoirs using multiple-point Geostatistics. Paper presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, (2005). https://doi.org/10.2118/95574-MS (2005)

  31. Hou, J., Takahashi, T., Katoh, A., Jaroonsitha, S., Chumsena, K.P., Nakayama, K.: Application of seismic attributes and neural network for sand probability prediction—a case study in the North Malay Basin. Bull. Geol. Soc. Malaysia. 54, 115–121 (2008). https://doi.org/10.7186/bgsm54200818

    Article  Google Scholar 

  32. Li, K., Yin, X., Liu, J., Zong, Z.: An improved stochastic inversion for joint estimation of seismic impedance and lithofacies. J. Geophys. Eng. 16(1), 62–76 (2019). https://doi.org/10.1093/jge/gxy005

    Article  Google Scholar 

  33. Soares, A., Azevedo, L.: Geostatistics for seismic characterization of oil reservoirs. In: Daya, S.B., Cheng, Q., Agterberg, F. (eds.) Handbook of Mathematical Geosciences. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78999-6_25

    Chapter  Google Scholar 

  34. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  35. Lu, S.: Measuring Dependence Via Mutual Information (Dissertation, Queen’s University) (2011)

  36. Soofi, E.S.: Principal information theoretic approaches. J. Am. Stat. Assoc. 95(452), 1349–1353 (2000). https://doi.org/10.1080/01621459.2000.10474346

    Article  Google Scholar 

  37. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, New Jersey (1957)

    Google Scholar 

  38. Eidsvik, J., Mukerji, T., Bhattacharjya, D.: Value of Information in the Earth Sciences: Integrating Spatial Modeling and Decision Analysis. Cambridge University Press (2015)

    Book  Google Scholar 

  39. Morosov, A.L., Schiozer, D.J.: Field-development process revealing uncertainty-assessment pitfalls. SPE Res. Eval. Eng. 20(2017), 765–778 (2017, August 1). https://doi.org/10.2118/180094-PA

    Article  Google Scholar 

  40. Morosov, A. L., Bratvold, R. B.: Drilling Campaign Optimization Using Sequential Information and Policy Analytics. Article submitted to SPE Journal (2021)

  41. Hanea, R.G., Casanova, P., Hustoft, L., Bratvold, R.B., Nair, R., Hewson, C., Leeuwenburgh, O., Fonseca, R.-M.-M.: Drill and learn: a decision-making work flow to quantify value of learning. SPE Res. Eval. Eng. 22(2019), 1131–1143 (2019). https://doi.org/10.2118/182719-PA

    Article  Google Scholar 

  42. Torrado, R. R., Rios, J., Tesauro, G.: Optimal sequential drilling for hydrocarbon field development planning. In: Proceedings of the thirty-first AAAI conference on artificial intelligence (pp. 4734–4739) (2017)

Download references

Acknowledgments

The authors acknowledge the Research Council of Norway and the industry partners – ConocoPhillips Skandinavia AS, Aker BP ASA, Eni Norge AS, Total E&P Norge AS, Equinor ASA, Neptune Energy Norge AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge AS, and DEA Norge AS – of The National IOR Centre of Norway for support. Also, the authors acknowledge Nicolas Remy and Alexandre Boucher for the SGeMS software, and Jianbing Wu and Lei Xu for the freely available CTGAN Python code.

Funding

Open access funding provided by University Of Stavanger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luís Morosov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morosov, A.L., Bratvold, R.B. Probability elicitation using geostatistics in hydrocarbon exploration. Comput Geosci 25, 2109–2130 (2021). https://doi.org/10.1007/s10596-021-10084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10084-9

Keywords

  • Probability elicitation
  • Geostatistics
  • Multiple-prospect exploration
  • Sequential decisions