Skip to main content
Log in

Objective-sensitive principal component analysis for high-dimensional inverse problems

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We introduce a novel approach of data-driven dimensionality reduction for solving high-dimensional optimization problems, including history matching. Objective-Sensitive parameterization of the argument accounts for the corresponding change of objective function value. The result is achieved via an extension of the conventional loss function, which only quantifies approximation error over realizations. This paper contains three instances of such an approach based on Principal Component Analysis (PCA). Gradient-Sensitive PCA (GS-PCA) exploits a linear approximation of the objective function. Two other approaches solve the problem approximately within the framework of stationary perturbation theory (SPT). All the algorithms are verified and tested with a synthetic reservoir model. The results demonstrate improvements in parameterization quality regarding the reveal of the unconstrained objective function minimum. Also, we provide possible extensions and analyze the overall applicability of the Objective-Sensitive approach, which can be combined with modern parameterization techniques beyond PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The generated data is available from the corresponding author on reasonable request.

References

  1. Aanonsen, S. I., Naevdal, G., Oliver, D. S., Reynolds, A. C., Valles, B.: The ensemble kalman filter in reservoir engineering-a review. Spe J. 14(3), 393–412 (2009). https://doi.org/10.2118/117274-pa

    Article  Google Scholar 

  2. Bergstrm, D.: Surface generation & analysis – mysimlabs. http://www.mysimlabs.com/surface_generation.html(2012)

  3. Brunton, S. L., Kutz, J. N.: Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press (2019)

  4. Canchumuni, S.W., Emerick, A.A., Pacheco, M.A.C.: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother. Comput. Geosci. 128, 87–102. https://doi.org/10.1016/j.cageo.2019.04.006 (2019)

  5. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares petrov-galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011). https://doi.org/10.1002/nme.3050

    Article  Google Scholar 

  6. Chen, Y., Oliver, D. S.: History matching of the norne full-field model with an iterative ensemble smoother. Spe Reserv. Eval. Eng. 17(2), 244–256 (2014). https://doi.org/10.2118/164902-pa

    Article  Google Scholar 

  7. Evensen, G., Hove, J., Meisingset, H., Reiso, E., Seim, K. S., Espelid, Ø., et al.: Using the Enkf for Assisted History Matching of a North Sea Reservoir Model. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2007)

  8. Hajizadeh, Y., Christie, M., Demyanov, V.: Ant colony optimization for history matching and uncertainty quantification of reservoir models. J. Pet. Sci. Eng. 77(1), 78–92 (2011). https://doi.org/10.1016/j.petrol.2011.02.005

    Article  Google Scholar 

  9. Hajizadeh, Y., Christie, M. A., Demyanov, V., et al.: History Matching with Differential Evolution Approach; a Look at New Search Strategies. In: SPE EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers (2010)

  10. Hajizadeh, Y., Christie, M. A., Demyanov, V., et al.: Towards Multiobjective History Matching: Faster Convergence and Uncertainty Quantification. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2011)

  11. Jafarpour, B., McLaughlin, D. B.: History matching with an ensemble kalman filter and discrete cosine parameterization. Comput. Geosci. 12(2), 227–244 (2008). https://doi.org/10.1007/s10596-008-9080-3

    Article  Google Scholar 

  12. Jansen, J. D.: Adjoint-based optimization of multi-phase flow through porous media - a review. Comput. Fluids 46(1), 40–51 (2011). https://doi.org/10.1016/j.compfluid.2010.09.039

    Article  Google Scholar 

  13. Jiang, A., Jafarpour, B.: History matching under uncertain geologic scenarios with variational autoencoders 2020(1), 1–14. https://doi.org/10.3997/2214-4609.202035194. https://www.earthdoc.org/content/papers/10.3997/2214-4609.202035194 (2020)

  14. Kadyrova, A., Khlyupin, A.: Application of Adjoint-Based Optimal Control to Gas Reservoir with a Memory Effect. In: ECMOR XVI - 16Th European Conference on the Mathematics of Oil Recovery. https://doi.org/10.3997/2214-4609.201802214, vol. 2018, pp 1–13. European Association of Geoscientists & Engineers (2018)

  15. Kaleta, M. P., Hanea, R. G., Heemink, A. W., Jansen, J. D.: Model-reduced gradient-based history matching. Comput. Geosci. 15(1), 135–153 (2011). https://doi.org/10.1007/s10596-010-9203-5

    Article  Google Scholar 

  16. Khaninezhad, M.M., Jafarpour, B., Li, L.: Sparse geologic dictionaries for subsurface flow model calibration: Part i. inversion formulation. Adv. Water Resour. 39, 106–121. https://doi.org/10.1016/j.advwatres.2011.09.002. https://www.sciencedirect.com/science/article/pii/S0309170811001692 (2012)

  17. Khaninezhad, M.M., Jafarpour, B., Li, L.: Sparse geologic dictionaries for subsurface flow model calibration: Part ii. robustness to uncertainty. Adv. Water Resour. 39, 122–136. https://doi.org/10.1016/j.advwatres.2011.10.005. https://www.sciencedirect.com/science/article/pii/S0309170811001977 (2012)

  18. Khaninezhad, M.R.M., Jafarpour, B.: Field-scale history matching with sparse geologic dictionaries. J. Petrol. Sci. Eng. 170, 967–991. https://doi.org/10.1016/j.petrol.2018.06.024. https://www.sciencedirect.com/science/article/pii/S0920410518305126 (2018)

  19. Laloy, E., Hérault, R., Lee, J., Jacques, D., Linde, N.: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Adv. Water Resour. 110, 387–405. https://doi.org/10.1016/j.advwatres.2017.09.029. https://www.sciencedirect.com/science/article/pii/S0309170817306243 (2017)

  20. Lie, K. A.: An introduction to reservoir simulation using MATLAB/GNU octave: User guide for the MATLAB reservoir simulation toolbox (MRST). Cambridge University Press. https://doi.org/10.1017/9781108591416 (2019)

  21. Liu, Y. M., Sun, W. Y., Durlofsky, L. J.: A deep-learning-based geological parameterization for history matching complex models. Math. Geosci. 51(6), 725–766 (2019). https://doi.org/10.1007/s11004-019-09794-9

    Article  Google Scholar 

  22. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 10 (2018)

  23. Mohamed, L., Christie, M. A., Demyanov, V., Robert, E., Kachuma, D., et al.: Application of Particle Swarms for History Matching in the Brugge Reservoir. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)

  24. Mukhin, A., Elizarev, M., Voskresenskiy, N., Khlyupin, A.: Application of dynamic parametrization algorithm for non-intrusive history matching approaches. https://doi.org/10.3997/2214-4609.202035045(2020)

  25. Oliver, D. S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011). https://doi.org/10.1007/s10596-010-9194-2

    Article  Google Scholar 

  26. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045. https://www.sciencedirect.com/science/article/pii/S0021999118307125 (2019)

  27. Romero, C., Carter, J., Gringarten, A., Zimmerman, R., et al.: A Modified Genetic Algorithm for Reservoir Characterisation. In: International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers (2000)

  28. Sahni, I., Horne, R. N.: Multiresolution wavelet analysis for improved reservoir description. Spe Reserv. Eval. Eng. 8(1), 53–69 (2005). https://doi.org/10.2118/87820-pa

    Article  Google Scholar 

  29. Sarma, P., Durlofsky, L. J., Aziz, K.: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math. Geosci. 40(1), 3–32 (2008). https://doi.org/10.1007/s11004-007-9131-7

    Article  Google Scholar 

  30. Sarma, P., Durlofsky, L. J., Aziz, K., Chen, W. H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10(1), 3–36 (2006). https://doi.org/10.1007/s10596-005-9009-z

    Article  Google Scholar 

  31. Schmidt, E.: Zur Theorie Der Linearen Und Nichtlinearen Integralgleichungen. In: Integralgleichungen Und Gleichungen Mit Unendlich Vielen Unbekannten, pp 190–233. Springer (1989)

  32. Schulze-Riegert, R. W., Axmann, J. K., Haase, O., Rian, D. T., You, Y. L.: Evolutionary algorithms applied to history matching of complex reservoirs. Spe Reserv. Eval. Eng. 5(2), 163–173 (2002). https://doi.org/10.2118/77301-pa

    Article  Google Scholar 

  33. Skjervheim, J. A., Evensen, G., et al.: An Ensemble Smoother for Assisted History Matching. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2011)

  34. Van Essen, G., Jimenez, E., Przybysz-jarnut, J. K., Horesh, L., Douma, S. G., van den Hoek, P., Conn, A., Mello, U. T., et al.: Adjoint-Based History-Matching of Production and Time-Lapse Seismic Data. In: SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers (2012)

  35. Vo, H. X., Durlofsky, L. J.: A new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological models. Math. Geosci. 46(7), 775–813 (2014). https://doi.org/10.1007/s11004-014-9541-2

    Article  Google Scholar 

  36. Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new pca-based parameterization. Comput. Geosci. 19(4), 747–767 (2015)

  37. Vo, H. X., Durlofsky, L. J.: Regularized kernel pca for the efficient parameterization of complex geological models. J. Comput. Phys. 322, 859–881 (2016). https://doi.org/10.1016/j.jcp.2016.07.011

    Article  Google Scholar 

  38. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Labor. Syst. 2(1-3), 37–52 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Elizarev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: aGS-PCA evaluation

Perturbed eigenproblem evaluation

To obtain an approximate solution for GS-PCA, we consider the objective-sensitive optimal decomposition problem with a sensitivity parameter ε, which satisfies a small perturbation criterion.

$$ \begin{array}{@{}rcl@{}} && \{ \boldsymbol{\varphi}_{i} \}_{i=1}^{N} = \arg \min_{\boldsymbol{\varphi}_{~}} <||\boldsymbol{\mu}_{N \text{r}}||_{W}^{2}> \end{array} $$
(30)
$$ \begin{array}{@{}rcl@{}} &&\text{s.t.}~ \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{W} = \delta_{ij} ,~ \varepsilon \geqslant 0 \end{array} $$
$$ \begin{array}{@{}rcl@{}} W = I + \varepsilon \boldsymbol{g}_{\boldsymbol{\eta}}^{T} \boldsymbol{g}_{\boldsymbol{\eta}} \end{array} $$
(31)
$$ \begin{array}{@{}rcl@{}} 0 \leqslant \varepsilon ||\boldsymbol{g}_{\boldsymbol{\eta}}||_{}^{2} \ll 1 \end{array} $$
(32)

Next, we express a residual norm \(||\boldsymbol {\mu }_{N \text {r}}||_{W}^{2}\) in terms of principal components φi and decomposition coefficients ai.

$$ ||\boldsymbol{\mu}_{N \text{r}}||_{W}^{2} = \sum\limits_{i>N} \sum\limits_{j>N} a_{i} a_{j} \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{W} $$
(33)

Assuming that the required solution is the first-order correction of standard principal components, we neglect higher-order terms of the scalar product \(\left <\boldsymbol {\varphi }_{i},\boldsymbol {\varphi }_{j} \right >_{W}\).

$$ \begin{array}{@{}rcl@{}} \boldsymbol{\varphi}_{k} = \boldsymbol{\varphi}_{k}^{0}+\boldsymbol{\varphi}_{k}^{1} \end{array} $$
(34)
$$ \begin{array}{@{}rcl@{}} \left<\boldsymbol{\varphi}_{i}^{0},\boldsymbol{g}_{\boldsymbol{\eta}} \right> = b_{i} \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{W} \approx \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> + \varepsilon b_{i} b_{j} \end{array} $$
(36)

After that, we express the mean product < aiaj > in terms of principal components φi, second moment K, scalar product matrix W, and derive a corresponding expression for the mean residual norm \(<\|\boldsymbol {\mu }_{{N_{r}}}\|^{2}_{W}>\).

$$ \begin{array}{@{}rcl@{}} <a_{i} a_{j}> = \boldsymbol{\varphi}_{i}^{T} W <\boldsymbol{\mu} \boldsymbol{\mu}^{T}> W \boldsymbol{\varphi}_{j} = \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{W {K} W} \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} <||\boldsymbol{\mu}_{N \text{r}}||_{W}^{2}> \approx \sum\limits_{i>N} \sum\limits_{j>N} (\left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> + \varepsilon b_{i} b_{j}) \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{W {K}W} \end{array} $$
(38)

To achieve a sufficient simplicity of the approximate decomposition problem, we additionally neglect first-order perturbations in the obtained scalar product matrix WKW and the problem constraint.

$$ \begin{array}{@{}rcl@{}} W {K}W = {K} + \varepsilon (G {K} + {K}G) + \varepsilon^{2} G {K}G \approx {K} \end{array} $$
(39)
$$ \begin{array}{@{}rcl@{}} \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{I+\varepsilon G} = \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> + \varepsilon \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{G} \approx \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> = \delta_{ij} \end{array} $$
(40)
$$ \begin{array}{@{}rcl@{}} && \{ \boldsymbol{\varphi}_{i} \}_{i=1}^{N} = \arg \min_{\boldsymbol{\varphi}_{}} \sum\limits_{i>N} \sum\limits_{j>N} (\left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> + \varepsilon b_{i} b_{j}) \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{{K}}\\ &&\text{s.t.}~ \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> = \delta_{ij} \end{array} $$
(41)

Such constraint optimization implies the minimization of a corresponding Lagrangian.

$$ \begin{array}{@{}rcl@{}} &&F_{i} = \sum\limits_{j>N}(\delta_{ij} + \varepsilon b_{i} b_{j})\left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{{K}}\\ &&L = \sum\limits_{i>N}\left[ F_{i} - \sigma_{i}(\left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right> - 1) \right] \rightarrow \min \end{array} $$
(42)

Evaluating the necessary condition of constraint extremum,

$$ \begin{array}{@{}rcl@{}} \frac{\partial}{\partial \boldsymbol{\varphi}_{k}} \left<\boldsymbol{\varphi}_{i},\boldsymbol{\varphi}_{j} \right>_{{{{\varTheta}}}} = 2 \delta_{jk} {{{\varTheta}}} \boldsymbol{\varphi}_{i} \end{array} $$
(43)
$$ \begin{array}{@{}rcl@{}} \frac{\partial L}{\partial \boldsymbol{\varphi}_{k}} = 2 ({K}\boldsymbol{\varphi}_{k} + \varepsilon b_{k} \sum\limits_{i} b_{i} {K} \boldsymbol{\varphi}_{i} - \sigma_{k} \boldsymbol{\varphi}_{k}) = 0 \end{array} $$
(44)

we derive a perturbed eigenproblem associated with the approximate GS-PCA.

$$ {K}\boldsymbol{\varphi}_{k} + \varepsilon b_{k} \sum\limits_{i} b_{i} {K} \boldsymbol{\varphi}_{i} = \sigma_{k} \boldsymbol{\varphi}_{k} $$
(45)

Perturbed eigenproblem solution

A first-order term \(\boldsymbol {\varphi }_{i}^{1}\) can be represented as a linear combination of unperturbed principal components given by a transform coefficients αij.

$$ \begin{aligned} &\boldsymbol{\varphi}_{k}^{1} = \sum\limits_{j} \alpha_{kj} \boldsymbol{\varphi}_{j}^{0} ,~ \alpha_{kk} = 0\\ &\sigma_{k} = {\sigma_{k}^{0}} + {\sigma_{k}^{1}} \end{aligned} $$
(46)

Given the known properties of unperturbed eigenvectors, we substitute decomposed vectors φ in the perturbed eigenproblem and project the expression onto an unperturbed vector \(\boldsymbol {\varphi }_{n}^{0}\).

$$ \begin{array}{@{}rcl@{}} {K}\boldsymbol{\varphi}_{k}^{0} = {\sigma_{k}^{0}} \boldsymbol{\varphi}_{k}^{0} \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} \sum\limits_{j} \alpha_{kj} {\sigma_{j}^{0}} \boldsymbol{\varphi}_{j}^{0} + \varepsilon b_{k} \sum\limits_{i} b_{i} {\sigma_{i}^{0}} \boldsymbol{\varphi}_{i}^{0} = {\sigma_{k}^{0}} \sum\limits_{j} \alpha_{kj} \boldsymbol{\varphi}_{j}^{0} + {\sigma_{k}^{1}} \boldsymbol{\varphi}_{k}^{0} \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} \alpha_{kn} {\sigma_{n}^{0}} + \varepsilon b_{k} b_{n} {\sigma_{n}^{0}} = {\sigma_{k}^{0}} \alpha_{kn} + {\sigma_{k}^{1}} \delta_{kn} \end{array} $$
(49)

Finally, the required expressions for the unknowns \({\sigma _{n}^{1}}\) and αkn are obtained from two cases of a relation between indices k and n.

$$ \begin{array}{@{}rcl@{}} k = n : \varepsilon b_{n} b_{n} {\sigma_{n}^{0}} = {\sigma_{n}^{1}} \end{array} $$
(50)
$$ \begin{array}{@{}rcl@{}} k \neq n : \alpha_{kn} {\sigma_{n}^{0}} + \varepsilon b_{k} b_{n} {\sigma_{n}^{0}} = {\sigma_{k}^{0}} \alpha_{kn} \end{array} $$
(51)

In this work, we additionally perform Gram – Schmidt orthogonalization on resulting vectors in terms of a scalar product \(\left <\boldsymbol {\varphi }_{i},\boldsymbol {\varphi }_{j} \right >_{W}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizarev, M., Mukhin, A. & Khlyupin, A. Objective-sensitive principal component analysis for high-dimensional inverse problems. Comput Geosci 25, 2019–2031 (2021). https://doi.org/10.1007/s10596-021-10081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10081-y

Keywords

Mathematics Subject Classification (2010)

Navigation