Abstract
Seismic modeling plays an important role in geophysics and seismology for estimating the response of seismic sources in a given medium. In this work, we present a MATLAB-based package, FDwave3D, for synthetic wavefield and seismogram modeling in 3D anisotropic media. The seismic simulation is carried out using the finite-difference method over the staggered grid, and it is applicable to both active and passive surveys. The code package allows the incorporation of arbitrary source mechanisms and offers spatial derivative operators of accuracy up to tenth-order along with different types of boundary conditions. First, the methodological aspects of finite-difference method are briefly introduced. Then, the code has been tested and verified against the analytical solutions obtained for the homogeneous model. Further, the numerical examples of layered and overthrust models are presented to demonstrate its reliability.
This is a preview of subscription content, access via your institution.
References
Sheriff, R.E., Geldart, L.P.: Exploration seismology. Cambridge University Press, Cambridge (1995)
Grechka, V., Yaskevich, S.: Azimuthal anisotropy in microseismic monitoring: a Bakken case study. Geophysics. 79, KS1–KS12 (2014). https://doi.org/10.1190/geo2013-0211.1
Stierle, E., Vavryčuk, V., Kwiatek, G., Charalampidou, E.-M., Bohnhoff, M.: Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy. Geophys. J. Int. 205, 38–50 (2016). https://doi.org/10.1093/gji/ggw009
Foulger, G.R., Julian, B.R., Hill, D.P., Pitt, A.M., Malin, P.E., Shalev, E.: Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing. J. Volcanol. Geotherm. Res. 132, 45–71 (2004). https://doi.org/10.1016/S0377-0273(03)00420-7
Šílený, J., Hill, D.P., Eisner, L., Cornet, F.H.: Non–double-couple mechanisms of microearthquakes induced by hydraulic fracturing. J. Geophys. Res. 114, B08307 (2009). https://doi.org/10.1029/2008JB005987
Meek, R., Hull, R.A., Von der Hoya, A., Eaton, D.: 3-D Finite Difference Modeling of Microseismic Source Mechanisms in the Wolfcamp Shale of the Permian Basin. Presented at the Unconventional Resources Technology Conference (URTeC), San Antonio (2015)
Hobro, J., William, M., Calvez, J.L.: The finite-difference method in microseismic modeling: fundamentals, implementation, and applications. Leading Edge. 35, 362–366 (2016)
Rodríguez-Pradilla, G., Eaton, D.W.: Finite-difference modelling of microseismicity associated with a hydraulic-fracturing stimulation in a coalbed methane reservoir. First Break. 36, 41–48 (2018)
Carcione, J.M., Herman, G.C., ten Kroode, A.P.E.: Seismic modeling. Geophysics. 67, 1304–1325 (2002). https://doi.org/10.1190/1.1500393
Moczo, P., Kristek, J., Gális, M.: The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures. Cambridge University Press, New York (2014)
Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam (2015)
Elsherbeni, A.Z., Demir, V.: The finite-difference time-domain: method for electromagnetics with MATLAB simulations. SciTech Publishing, an imprint of the IET, Edison (2016)
Cui, X., Lines, L., Krebes, E.S., Peng, S.: Seismic Forward Modeling of Fractures and Fractured Medium Inversion. Springer Singapore, Singapore (2018)
Bohlen, T.: Parallel 3-D viscoelastic finite difference seismic modelling. Comput. Geosci. 28, 887–899 (2002). https://doi.org/10.1016/S0098-3004(02)00006-7
Torberntsson, K., Stiernström, V., Mattsson, K., Dunham, E.M.: A finite difference method for earthquake sequences in poroelastic solids. Comput. Geosci. 22, 1351–1370 (2018). https://doi.org/10.1007/s10596-018-9757-1
Vireux, J.: P-SV wave propagation in heterogeneous media: velocity stress finite-difference method. Geophysics. 51, 889–901 (1986)
Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion. 31, 77–92 (2000). https://doi.org/10.1016/S0165-2125(99)00023-2
Cerjan, C., Kosloff, D., Kosloff, R., Reshef, M.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics. 50, 705–708 (1985). https://doi.org/10.1190/1.1441945
Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994). https://doi.org/10.1006/jcph.1994.1159
Collino, F., Tsogka, C.: Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics. 66, 294–307 (2001)
Saenger, E.H., Bohlen, T.: Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics. 69, 583–591 (2004). https://doi.org/10.1190/1.1707078
Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106 (1996)
Pitarka, A.: 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull. Seismol. Soc. Am. 89, 54–68 (1999)
Sheen, D.-H., Tuncay, K., Baag, C.-E., Ortoleva, P.J.: Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation. Comput. Geosci. 32, 1182–1191 (2006). https://doi.org/10.1016/j.cageo.2005.11.001
Thorbecke, J.W., Draganov, D.: Finite-difference modeling experiments for seismic interferometry. Geophysics. 76, H1–H18 (2011). https://doi.org/10.1190/geo2010-0039.1
Malkoti, A., Vedanti, N., Tiwari, R.K.: An algorithm for fast elastic wave simulation using a vectorized finite difference operator. Comput. Geosci. 116, 23–31 (2018). https://doi.org/10.1016/j.cageo.2018.04.002
Boyd, O.S.: An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions. Comput. Geosci. 32, 259–264 (2006). https://doi.org/10.1016/j.cageo.2005.06.019
Martin, R., Komatitsch, D.: An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys. J. Int. 179, 333–344 (2009). https://doi.org/10.1111/j.1365-246X.2009.04278.x
Michéa, D., Komatitsch, D.: Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards: accelerating a wave propagation code using GPUs. Geophys. J. Int. 182, 389–402 (2010). https://doi.org/10.1111/j.1365-246X.2010.04616.x
Weiss, R.M., Shragge, J.: Solving 3D anisotropic elastic wave equations on parallel GPU devices. Geophysics. 78, F7–F15 (2013). https://doi.org/10.1190/geo2012-0063.1
Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A., Bohlen, T.: On the influence of model parametrization in elastic full waveform tomography. Geophys. J. Int. 191, 325–345 (2012). https://doi.org/10.1111/j.1365-246X.2012.05633.x
Rubio, F., Hanzich, M., Farrés, A., de la Puente, J., María Cela, J.: Finite-difference staggered grids in GPUs for anisotropic elastic wave propagation simulation. Comput. Geosci. 70, 181–189 (2014). https://doi.org/10.1016/j.cageo.2014.06.003
Maeda, T., Takemura, S., Furumura, T.: OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth Planets Space. 69, 1–20 (2017). https://doi.org/10.1186/s40623-017-0687-2
Fabien-Ouellet, G., Gloaguen, E., Giroux, B.: Time-domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with OpenCL. Comput. Geosci. 100, 142–155 (2017). https://doi.org/10.1016/j.cageo.2016.12.004
Zhu, T.: Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation. Geophysics. 82, WA1–WA10 (2017). https://doi.org/10.1190/geo2016-0635.1
Shi, P., Angus, D., Nowacki, A., Yuan, S., Wang, Y.: Microseismic full waveform modeling in anisotropic media with moment tensor implementation. Surv. Geophys. 39, 567–611 (2018). https://doi.org/10.1007/s10712-018-9466-2
Sharma, G., Martin, J.: MATLAB®: a language for parallel computing. Int. J. Parallel Prog. 37, 3–36 (2009). https://doi.org/10.1007/s10766-008-0082-5
Wüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G.: SplitLab: a shear-wave splitting environment in Matlab. Comput. Geosci. 34, 515–528 (2008). https://doi.org/10.1016/j.cageo.2007.08.002
Yu, C., Zheng, Y., Shang, X.: Crazyseismic: a MATLAB GUI-based software package for passive seismic data preprocessing. Seismol. Res. Lett. 88, 410–415 (2017). https://doi.org/10.1785/0220160207
Chapman, C.H.: Fundamentals of Seismic Wave Propagation. Cambridge University Press, New York (2004)
Thomsen, L.: Weak elastic anisotropy. Geophysics. 51, 1954–1966 (1986). https://doi.org/10.1190/1.1442051
Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics. 53, 1425–1436 (1988). https://doi.org/10.1190/1.1442422
Igel, H., Mora, P., Riollet, B.: Anisotropic wave propagation through finite-difference grids. Geophysics. 60, 1203–1216 (1995). https://doi.org/10.1190/1.1443849
Bohlen, T., De Nil, D., Koehn, D., Jetschny, S.: SOFI3D - Seismic Modeling with Finite Differences 3D - Acoustic and Viscoelastic Version. Karlsruhe Institute of Technology, Karlsruhe (2015)
Jost, M.L., Herrmann, R.B.: A student’s guide to and review of moment tensors. Seismol. Res. Lett. 60, 37–57 (1989). https://doi.org/10.1785/gssrl.60.2.37
Burridge, R., Knopoff, L.: Body force equivalents for seismic dislocations. Bull. Seismol. Soc. Am. 54, 1875–1888 (1964)
Gilbert, F.: Excitation of the normal modes of the earth by earthquake sources. Geophys. J. Int. 22, 223–226 (1971)
Aki, K., Richards, P.G.: Quantitative seismology. University Science Books, Sausalito (2002)
Li, H.J., Wang, R.Q., Cao, S.Y.: Microseismic forward modeling based on different focal mechanisms used by the seismic moment tensor and elastic wave equation. J. Geophys. Eng. 12, 155–166 (2015)
Li, D., Helmberger, D., Clayton, R.W., Sun, D.: Global synthetic seismograms using a 2-D finite-difference method. Geophys. J. Int. 197, 1166–1183 (2014). https://doi.org/10.1093/gji/ggu050
Li, L., Chen, H., Wang, X.M.: Numerical simulation of microseismic wavefields with moment-tensor sources. In: 2016 Symposium on Piezoelectricity, Acoustic waves, and Device Applications, pp. 339–343 (2016)
Chew, W.C., Liu, Q.H.: Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comp. Acous. 04, 341–359 (1996). https://doi.org/10.1142/S0218396X96000118
Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics. 72, SM155–SM167 (2007). https://doi.org/10.1190/1.2757586
Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. & Dev. 11, 215–234 (1967). https://doi.org/10.1147/rd.112.0215
Robertsson, J.O.A., Blanch, J.O., Symes, W.W.: Viscoelastic finite-difference modeling. Geophysics. 59, 1444–1456 (1994). https://doi.org/10.1190/1.1443701
Moczo, P.: 3D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion. Bull. Seismol. Soc. Am. 90, 587–603 (2000). https://doi.org/10.1785/0119990119
Aminzadeh, F., Jean, B., Kunz, T.: 3-D salt and overthrust models. Society of Exploration Geophysicists (1997)
Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics. 74, WCC1–WCC26 (2009). https://doi.org/10.1190/1.3238367
Acknowledgments
We acknowledge Peidong Shi from University Grenoble Alpes for providing the 3D overthrust model. We thank the Associate Editor Tristan van Leeuwen and an anonymous reviewer for reviewing the manuscript. Previous comments from Erik Koene and Joe Dellinger on the manuscript are also appreciated. The work is sponsored by the National Natural Science Foundation of China (Grant Nos. 42004115, 41872151), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50762), the China Postdoctoral Science Foundation (Grant No. 2019 M652803).
Funding
The work is sponsored by the National Natural Science Foundation of China (Grant Nos. 42004115, 41872151), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50762), the China Postdoctoral Science Foundation (Grant No. 2019 M652803).
Code availabilityThe code package FDwave3D is available in MATLAB on GitHub at https://github.com/leileely/FDwave3D.
Author information
Authors and Affiliations
Contributions
L. Li contributed to method development and testing, and drafted the manuscript. J. Tan contributed to manuscript review and funding acquisition. D. Zhang, A. Malkoti, I. Abakumov, and Y. Xie contributed to code programming, testing, and revised the manuscript. The author(s) read and approved the final manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
We declare no conflicts of interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, L., Tan, J., Zhang, D. et al. FDwave3D: a MATLAB solver for the 3D anisotropic wave equation using the finite-difference method. Comput Geosci 25, 1565–1578 (2021). https://doi.org/10.1007/s10596-021-10060-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-021-10060-3