Skip to main content

Multibody approach for reactive transport modeling in discontinuous-heterogeneous porous media

Abstract

In the context of long-term degradation of porous media, the coupling between fracture mechanics and reactive transport is investigated. A reactive transport model in a cracked discontinuous and heterogeneous porous medium is proposed. The species transport through and along the crack network are taken into account in a multibody approach. A dedicated geochemistry solver is developed and allows to take into account a significant number of chemical reactions. The model is validated via a benchmark for a porous medium without discontinuity. The applications deal with two kinds of chemical attacks in a pre-cracked concrete sample and highlight the impact of the discontinuities in the reactive transport kinetic and on the localization of the chemical degradation. The results bring out that a unidirectional descriptor, such as the depth of ingress rate, is not sufficient to describe the material degradation correctly.

This is a preview of subscription content, access via your institution.

References

  1. Amir, L., Kern, M.: A newton–krylov method for coupling transport with chemistry in porous media

  2. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics trans. AIME 146(01), 54–62 (1942)

    Google Scholar 

  3. Bergheau, J.-M., Leblond, J.-B.: Implémentation numérique et application de modèles de diffusion/réaction dans les solides. 14ème Colloque National en Calcul des Structures (2019)

  4. Bichet, L.: Mécanisme de transport dans la fissuration des matériaux hétérogenes : application a la durée de vie d’éxploitation des centrales nucléaires. PhD thesis, Université de Montpellier II (2017)

  5. Hilaire, A.: Etude des déformations différées des bétons en compression et en traction, du jeune au long terme : application aux enceintes de confinement. PhD thesis, Ecole Normale Supérieure de Cachan (2014)

  6. Blanc, P. h., Lassin, A., Piantone, P., Azaroual, A., Jacquemet, N., Fabbri, A., Gaucher, E.C.: Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 27(10), 2107–2116 (2012)

    Article  Google Scholar 

  7. Budiansky, B., OĆonnel, R. J.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976)

    Article  Google Scholar 

  8. Campos, A., López, C. M., Aguado, A.: Diffusion reaction model for the internal sulfate attack in concrete. Constr. Build. Mater. 102, 531–540 (2016)

    Article  Google Scholar 

  9. Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., De Dieuleveult, J., Erhel, C., Van Der Lee, J., Lagneau, V., Mayer, K.U., MacQuarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems the MoMaS benchmark case. Comput. Geosci. 14, 483–502 (2010)

    Article  Google Scholar 

  10. De Dieuleveult, C., Erhel, J., Kern, M.: A global strategy for solving reactive transport equations. J. Comput. Phys. 228, 6395–6410 (2009)

    Article  Google Scholar 

  11. De Windt, L., Bradreddine, R., Lagneau, V.: Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios. J. of Hazard. Mater. 139, 529–536 (2007)

    Article  Google Scholar 

  12. Delaume, E.: Méthode de raffinement local adaptatif multiniveaux pour la fissuration des matériaux hétérogènes. PhD thesis, Université Montpellier II (2017)

  13. Djerbi, A., Bonnet, S., Khelidj, A., Baroghel-Bouny, V.: Influence of traversing crack on chloride diffusion into concrete. Cem. Conc. Res. 38, 877–883 (2008)

    Article  Google Scholar 

  14. Erhel, J., Sabit, S., De Dieuleveult, C.: Developments in parallel, distributed, grid and cloud computing for engineering. In: Topping, B.H.V., Iványi, P. (eds.) UK, Chapter 7: Solving Partial Differential Algebraic Equations and Reactive Transport Models, pp 151–169 (2013)

  15. Erhel, J., Migot, T.: Characterizations of solutions in geochemistry: existence, uniqueness, and precipitation diagram. Comput. Geosci. 23, 523–535 (2019)

    Article  Google Scholar 

  16. Haas, J., Nonat, A.: From csh to cash: Experimental study and thermodynamic modelling. Cem. Conc. Res. 68, 124–138 (2015)

    Article  Google Scholar 

  17. Heukamp, F.H.: Chemomechanics of Calcium Leaching of Cement-Based Materials at Different Scales: The Role of CH-Dissolution and C-S-H-Degradation on Strength and Durability Performance of Materials and Structures. PhD thesis, Massachussetts Institute of Technology (2003)

  18. Idiart, A.E., Bisschop, J., Caballero, A., Lura, P.: A numerical and experimental study of aggregate-induced shinkrage craking in cementitious composites. Cem. Conc. Res. 42, 272–281 (2012)

    Article  Google Scholar 

  19. Idiart, A.E., López, C. M., Carol, I.: Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cem. Concr. Compos. 33, 411–423 (2011)

    Article  Google Scholar 

  20. Jebli, M., Jamin, F., Garcia-Diaz, E., El Omari, M., El Youssoufi, M.S.: Influence of leaching on the local mechanical properties of an aggregate-cement paste composite. Cem. Concr. Compos. 73, 241–250 (2016)

    Article  Google Scholar 

  21. Kchakech, B.: Etude de l’influence de l’échauffement subi par un béton sur le risque d’expansions associées à la Réaction Sulfatique Interne. PhD thesis, Université Paris-Est (2016)

  22. Kondo, D., Dormieux, L.: Approche micromécanique du couplage perméabilité-endommagement. Compte Rendu Mecanique (2004)

  23. Lagneau, V., Van Der Lee, J.: Hytec results of the momas reactive transport benchmark. Comput. Geosci. 14, 435–449 (2010)

    Article  Google Scholar 

  24. Lagneau, V., Van Der Lee, J.: Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement. J. Contam. Hydrol. 112, 118–129 (2010)

    Article  Google Scholar 

  25. Leblond, J. B., Bergheau, J. M., Lacroix, R., Huin, D.: Implementation and application of some nonlinear models of diffusion/reaction in solids. Finite Elements in Anal. Des. 132, 8–26 (2017)

    Article  Google Scholar 

  26. Liaudat, J.: Experimental and numerical study of the effect of stress on ASR expansions in concrete. PhD thesis, School of Civil Engineering of Barcelona (2018)

  27. Lothenbach, B., Kulik, D., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B.Z., Miron, D.G., Myers, R.: Cemdata18: A chemical thermodynamic database for hydrated portland cements and alkaliactivated materials. Cem. Conc. Res. 115, 472–506 (2019)

    Article  Google Scholar 

  28. Marquié, C., Dauzeres, A., Richard, B., Nahas, G.: Concrete aging in containment building and deep geological disposal facilities: the ODOBA project. Transactions, SMiRT-25 Charlotte, NC, USA (2019)

  29. Martin, R.P., Metalssi, O.O., Toutlemonde, F.: Importance of considering the coupling between transfer properties, alkali leaching and expansion in the modelling of concrete beams affected by internal swelling reactions. Constr. Build. Mater. 49, 23–30 (2013)

    Article  Google Scholar 

  30. Mayer, K.U.: A Numerical Model for Multicomponent Reactive Transport in Variability Saturated Porous Media. PhD thesis, University of Waterloo (1999)

  31. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38(9), 1–21 (2002)

    Article  Google Scholar 

  32. Mayer, K.U., MacQuarrie, K.T.B.: Solution of the MoMaS reactive transport benchmark with MIN3P—model formulation and simulation results. Comput. Geosci. 14, 405–419 (2010)

    Article  Google Scholar 

  33. Michel, J.C., Suquet, P., Thébaud, F.: Une modélisation du rôle des interfaces dans le comportement des composites à matrice métallique. Revue Europé,enne des Éléments 3(4), 573–595 (1994)

    Article  Google Scholar 

  34. Miura, T., Maruyama, I., Nakamura, H., Yammoto, Y.: Feedback system of ion transfer through cracks during deterioration of mortar due to sulfate attack evaluated by rbsm-truss network model. J. of Adv. Concr. Tech. 15, 610–626 (2017)

    Article  Google Scholar 

  35. Morel, F., Morgan, J.: A numerical method for computing equilibria in aqueous chemical systems. Environ. Sci. Tech. 6(1), 58–67 (1972)

    Article  Google Scholar 

  36. Nardi, A., Idiart, A., Trichero, P., Manuel, L., de Vries, L.M., Molinero, J.: Interface comsol-phreeqc (icp), an efficient numerical framework for the solution of coupled multiphysics and geochemistry. Computer Geosci. 69, 10–21 (2014)

    Article  Google Scholar 

  37. Neji, M., Bary, B., Le Bescop, P., Burlion, N.: Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. chemical analysis. J. Nucl. Mater. 467, 544–556 (2015)

    Article  Google Scholar 

  38. Nilenius, F., Larsson, F., Lundgren, K., Runesson, K.: Mesoscale modelling of crack-induced diffusivity in concrete. Comput. Mech. 55(2), 359–370 (2015)

    Article  Google Scholar 

  39. Ochs, M., Mallants, D., Wang, L.: Radionuclide and Metal Sorption on Cement and Concrete. Chapter 2: Cementitious Materials and Their Sorption Properties. Springer International Publishing, Berlin (2016)

    Book  Google Scholar 

  40. Oliveira, I., Cavalaro, H.P., Aguado, A.: New kinetic model to quantify the internal sulfate attack in concrete. Cem. Conc. Res. 43, 95–104 (2013)

    Article  Google Scholar 

  41. Ollivier, J.P., Vichot, A.V., Capmas, A., Nonat, A., Torrenti, J.-M., Damidot, D., Le Bescop, P., Pons, G., Guérinet, M., Acker, P., Guiraud, P., Rougeau, P., Baroghel-Bouny, V., Cussigh, F., Laurens, S., Gagné, R., Capra, B., Linger, L., Carles-Gibergues, A., Honain, H., Escadeillas, G., Colina, H., Robert, F., Debicki, G., Fryda, H., Saucier, F., Lamberet, S., Scrivener, K., Guinot, D., Sommain, D.: La durabilité des bétons. Presses de l’Ecole Nationale des Ponts et Chaussées (2008)

  42. Papachristos, E., Scholtès, L., Donzé, V., Chapeyre, B.: Intensity and volumetric characterizations of hydraulically driven fractures by hydro-mechanical simulations. Int. J. Rock Mech. Min. Sci. 93, 163–178 (2017)

    Article  Google Scholar 

  43. Parkhurst, D.L., Wissmeier, L.: Phreeqcrm: A reaction module for transport simulators based on the geochemical model phreeqc. Adv. Water Resour. 8, 176–189 (2015)

    Article  Google Scholar 

  44. Pelissou, C.: Discrétisation spatiotemporelle du problème thermique à deux champs : application au procédé de forgeage à chaud. PhD thesis, École Nationale Supérieure des Mines de Paris (2005)

  45. Perales, F., Bourgeois, S., Chrysochoos, A., Monerie, Y.: Two field multibody method for periodic homogenization in fracture mechanics of non linear heterogeneous materials. Eng. Fracture Mech. 75, 3378–3398 (2008)

    Article  Google Scholar 

  46. Perko, J., Ukrainczyk, N., Savija, B., Phung, Q.T., Koenders, E.A.B.: Influence of Micro-Pore Connectivity and Micro-Fractures on Calcium Leaching of Cement Pastes—A Coupled Simulation Approach Mat 13 (2697)

  47. Perales, F., Dubois, F., Monerie, Y., Piar, B., Stainier, L.: A nonsmooth contact dynamics-based multi-domain solver. code coupling (xper) and application to fracture. Eu. J. Comput. Mech. 19(4), 389–417 (2010)

    Article  Google Scholar 

  48. Perales, F., Dubois, F., Monerie, Y., Mozul, R., Babik, F.: Xper : une plateforme pour la simulation numérique distribuée d’interactions multiphysiques entre corps 14ème Colloque National en Calcul des Structures (2019)

  49. J Perko, K.U., Mayer, G., Kosakowski, L., De Windt, J., Govaerts, D., Jacques, D. S. u., Meeussen, J.C.L.: Decalcification of cracked cement structure. Comput. Geosci. 19, 673–693 (2015)

    Article  Google Scholar 

  50. Perko, J., Seetharam, S., Mallants, D.: Verification and validation of flow and transport in cracked saturated porous media. Excerpt from the Proceedings of the 2011 COMSOL Conference in Stuttgart (2011)

  51. Planel, D., Sercombe, J., Le Bescop, P., Adenot, F., Torrenti, J. -M.: Long-term performance of cement paste during combined calcium leaching-suflate attack: kinetics and size effect. Cem. Conc. Res. 36, 137–143 (2006)

    Article  Google Scholar 

  52. Poyet, S., Sellier, A., Capra, B., Foray, G., Torrenti, J. -M., Cognon, E., Bourdarot, E.: Chemical modelling of alkali silica reaction: Influence of the reactive aggregate size distribution. Mater. Struct. 40, 229–239 (2007)

    Article  Google Scholar 

  53. Repina, M., Bouyer, F., Lagneau, V.: Reactive transport modeling of glass alteration in a fractured vitrified nuclear glass canister: From upscaling to experimental validation. J. Nucl. Mater. 528, 151869 (2020)

    Article  Google Scholar 

  54. Salgues, M., Sellier, A., Multon, S., Bourdarot, E., Grimal, E.: DEF modelling based on thermodynamic equilibria and ionic transfers for structural analysis. Eur. J. Environ. Civ. Eng. 18(4), 1–26 (2014)

    Google Scholar 

  55. Samson, E., Marchand, J.: Modeling the transport of ions in unsaturated cement-based materials. Comput. Struct. 85, 1740–1756 (2007)

    Article  Google Scholar 

  56. Savija, B., Pacheco, J., Schlangen, E.: Lattice modeling of chloride diffusion in sound and cracked concrete. Cem. Conc. Compos. 42, 30–40 (2013)

    Article  Google Scholar 

  57. Segura, J.M., Carol, I.: On zero-thickness interface elements for diffusion problems. Int. J. Numer. Anal. Methods Geomech. 28(9), 947–62 (2004)

    Article  Google Scholar 

  58. Sellier, A., Multon, S.: Chemical modelling of delayed ettringite formation for assessment of affected concrete structures. Cem. Conc. Res. 108, 72–86 (2018)

    Article  Google Scholar 

  59. Socié, A.: Modélisation chimiomécanique de la fissuration de matériaux cimentaires : vieillissement et tenue des enceintes de confinement des centrales nucléaires. PhD thesis, Université de Montpellier (2019)

  60. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)

    Article  Google Scholar 

  61. Stora, E., Bary, B., He, Q. -C., Deville, E., Montarnal, P.: Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials leaching process and induced loss of stiffness. Cem. Conc. Res. 39, 763–772 (2009)

    Article  Google Scholar 

  62. Suquet, P.M.: CSIM Courses and lectures - No. 302. International center for mechanical sciences. Chapter “Discontinuities and Plasticity” in Non Smooth Mechanics and Applications (1988)

  63. Van der Lee, J.: Thermodynamic and mathematical concepts of CHESS. Ecole Nationale Supérieure des Mines de Paris (2009)

  64. Van Der Lee, J., De Windt, L., Lagneau, V., Goble, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. (2003)

  65. Wu, T., Wrigger, P.: Multiscale diffusion-thermal-mechanical cohesive zone model for concrete. Computer Mech. 55, 999–1016 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Perales.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Mass action law for solid reaction

The law of mass action is rewritten with logarithmic unknowns in order to ensure the positivity of all concentrations.

$$ \begin{array}{lc} \forall i \in [1,N^{sol}], \\ \displaystyle{\displaystyle{\xi_{i}^{sol}\left( \underline{C}^{aq}\right)} = \left( K_{i}^{sol}\right)^{-1} \prod\limits_{j=1}^{N^{aq,p}} \left( \gamma_{j} C^{aq,p}_{i} \right)^{S^{sol}_{i,j}} - 1 = 0 } \\ \displaystyle{\displaystyle{\xi_{i}^{sol}\left( \underline{C}^{aq}\right)} =} \\ \displaystyle{ \exp \left( -\ln\left( K_{i}^{sol}\right) + \sum\limits_{j=1}^{N^{aq,p}} S^{sol}_{i,j} \left( \ln(\gamma_{j}) + \ln\left( C^{aq,p}_{i}\right) \right) \right)} \end{array} $$
(36)

The bijectivity of the exponential function induces:

$$ \begin{array}{lc} \forall i \in [1,N^{sol}],\\ \displaystyle{\xi_{i}^{sol*}\left( \underline{C}^{aq}\right)} \overset{\text{def}}{=} \\ - \ln({K_{i}^{s}}) + {\sum}_{j=1}^{N^{aq,p}} S^{sol}_{i,j} \left( \ln(\gamma_{j}) + \ln\left( C^{aq,p}_{i}\right) \right) = 0 \end{array} $$
(37)

Appendix 2: Jacobian terms of the geochemical numerical method

The chemical model reads (see Section 3):

$$ \begin{array}{l} \text{find } \underline{C}^{aq,p} \in (\mathbb{R}_{+}^{\ast})^{N^{aq}}, \underline{C}^{ad,p} \in (\mathbb{R}_{+}^{\ast})^{N^{ad}} \text{ and } \\ \underline{C}^{sol} \in (\mathbb{R}_{+}^{\ast})^{N^{sol}} \text{ such that:} \\ \left\{\begin{array}{lc} \displaystyle{ \underline{{\varXi}}^{aq} \overset{\text{def}}{=} \underline{C}_{tot}^{aq} - \left[ \exp\left( \ln\left( \underline{C}^{aq,p}\right)\right) + \left( \underline {\underline{S}}^{aq}\right)^{T} \cdot \underline{C}^{aq,s} \right.}\\ \displaystyle{ \left.{\kern1.1cm} + \left( \underline {\underline{S}}^{ad/aq}\right)^{T} \cdot {C}^{ad,s} + \left( \underline {\underline{S}}^{sol}\right)^{T} \cdot\underline{C}^{sol} \right] = \underline{0} } \\ \displaystyle{ \underline{{\varXi}}^{ad} \overset{\text{def}}{=}} \\ \displaystyle{ \underline{C}_{tot}^{ad} - \left[ \exp(\ln(\underline{C}^{ad,p})) +\left( \underline {\underline{S}}^{ad/ad}\right)^{T} \cdot \underline{C}^{ad,s} \right] = \underline{0} } \\ \underline{{\varXi}}^{sol} \overset{\text{def}}{=} \underline{\xi}^{sol*} \left( \underline{C}^{aq,p} \right) = \underline{0} \\ \displaystyle{{\varXi}^{el} \overset{\text{def}}{=} \sum\limits_{i=1}^{N^{aq}_{p}+N^{aq}_{s}} z_{i} \exp\left( \ln\left( C_{i}^{aq}\right)\right) = 0 } \end{array}\right. \end{array} $$
(38)

The system is solved by a Newton-Raphson method. The Jacobian of this system is given by:

$$ \displaystyle{\underline {\underline{J}}\overset{\text{def}}{=}\begin{pmatrix} \frac{\partial {\underline{{\varXi}}^{aq}}}{\partial {\ln(\underline{C}^{aq,p})}} & \frac{\partial {\underline{{\varXi}}^{aq}}}{\partial {\ln(\underline{C}^{ad,p})}} & \frac{\partial {\underline{{\varXi}}^{aq}}}{\partial {\underline{C}^{sol}}} \\ \frac{\partial {\underline{{\varXi}}^{ad}}}{\partial {\ln(\underline{C}^{aq,p})}} & \frac{\partial {\underline{{\varXi}}^{ad}}}{\partial {\ln(\underline{C}^{ad,p})}} & \underline {\underline{0}} \\ -\frac{\partial {\underline{{\varXi}}^{sol}}}{\partial {\ln(\underline{C}^{aq,p})}} & \underline {\underline{0}} & \underline {\underline{0}} \end{pmatrix}} $$
(39)

where the Jacobian matrix terms are:

$$ \left\{ \begin{array}{lc} \displaystyle{\frac{\partial {{\varXi}_{i}^{aq}}}{\partial {\ln(C^{aq,p}_{j})}} =} \\ \displaystyle{ - \delta_{i,j} \exp(\ln(C_{i}^{aq,p})) - \sum\limits_{k=1}^{N_{s}^{aq}} S^{aq}_{j,k} \frac{\partial { C_{i}^{aq,s}}}{\partial {\ln(C^{aq,p}_{j})}}} \\ \displaystyle{ -\sum\limits_{k=1}^{N_{s}^{ad}} S^{ad}_{j,k} \frac{\partial {C_{k}^{ad,s}}}{\partial {\ln(C^{aq,p}_{j})}}} \\ \displaystyle{\frac{\partial {{\varXi}_{i}^{aq}}}{\partial {\ln(C^{ad,p}_{j})}} = - \sum\limits_{k=1}^{N_{s}^{ad}} S^{ad}_{j,k} \frac{\partial {C_{k}^{ad,s}}}{\partial {\ln(C^{ad,p}_{j})}}} \\ \displaystyle{\frac{\partial {\underline{{\varXi}}_{i}^{ad}}}{\partial {\ln(C_{i}^{aq,p})}} = -\sum\limits_{k=1}^{N_{s}^{ad}} S^{ad/ad}_{i,k} \frac{\partial {C_{k}^{ad,s}}}{\partial {\ln(C^{aq,p}_{j})}} } \\ \displaystyle{\frac{\partial {\underline{{\varXi}}_{i}^{ad}}}{\partial {\ln(C_{j}^{ad,p})}} =} \\ \displaystyle{ -\delta_{i,j} \exp(\ln(C_{i})) - \sum\limits_{k=1}^{N_{s}^{ad}} S^{ad/ad}_{i,k} \frac{\partial { C_{k}^{ad,s}}}{\partial {\ln(C^{ad,p}_{j})}} } \\ \displaystyle{\frac{\partial {\underline{{\varXi}}_{i}^{sol}}}{\partial {\ln(C^{aq,p}_{j})}} =} \\ \displaystyle{ - \sum\limits_{k=1}^{N^{ad}_{p}} S_{i,k}^{sol} \left( \frac{\partial {\ln(\gamma_{k})}}{\partial {\ln(C_{j}^{aq,p})}} + \delta_{k,j} \ln(C_{k}^{aq,p}) \right) } \\ \displaystyle{\frac{\partial {{\varXi}_{i}^{aq}}}{\partial {C^{sol}_{j}}} = - \sum\limits_{k=1}^{N_{}^{sol}} S^{sol}_{j,k} \delta_{k,j} } \end{array}\right. $$
(40)

with :

$$ \left\{ \begin{array}{lc} \displaystyle{\frac{\partial { C_{i}^{aq,s}}}{\partial {\ln(C^{aq,p}_{j})}} = \left( -\frac{\partial {\ln(\gamma_{i})}}{\partial {\ln(C^{aq,p}_{i})}} + \sum\limits_{k=1}^{N^{aq}_{p}} S_{i,k}^{aq} \left( \frac{\partial {\ln(\gamma_{k})}}{\partial {\ln(C_{j}^{aq,p})}} \right.\right.} \\ \displaystyle{\left.\left.{\kern2cm}+ \delta_{k,j} \ln(C_{k}^{aq,p}) \right) \right) C_{i}^{aq,s}} \\ \displaystyle{\frac{\partial { C_{i}^{ad,s}}}{\partial {\ln(C^{aq,p}_{j})}} = \left( \sum\limits_{k=1}^{N^{aq}_{p}} S_{i,k}^{ad/aq} \left( \frac{\partial {\ln(\gamma_{k})}}{\partial {\ln(C^{aq,p}_{j})}} \right.\right.} \\ \displaystyle{\left.\left.{\kern2. cm}+ \delta_{k,j} \ln\left( C^{aq,p}_{k}\right) \right) \right) C^{ad,s}_{i} } \\ \displaystyle{\frac{\partial { C^{ad,s}_{i}}}{\partial {\ln(C^{ad,p}_{j})}} = \left( \sum\limits_{k=1}^{N^{ad}_{p}} S_{i,k}^{ad/ad} \delta_{k,j} \ln(C^{ad,p}_{k}) \right) C^{ad,s}_{i}} \\ \frac{\partial {\ln(\gamma_{i})}}{\partial {\ln(C^{aq,p}_{j})}} = -A {z_{i}^{2}} \left( \frac{1}{2\sqrt{IS}\left( 1+\sqrt{IS}\right)^{2}} - b \right) \\ {\kern2cm} \times \delta_{i,j} {z_{j}^{2}} \exp(\ln(C_{j}^{aq,p})) \end{array}\right. $$
(41)

If the electroneutrality is imposed (26), the chemical system is overdetermined. As implemented in CHESS software [63], one mass conservation relations of the aqueous species is replaced by the electroneutrality equation. The associated Jacobian term is:

$$ \begin{array}{lc} \displaystyle{\frac{\partial {{\varXi}^{el}}}{\partial {\ln(C_{i}^{aq})}} = z_{i} \exp(\ln(C_{i}^{aq}))} & \forall i \in [1,N^{aq-1}] \end{array} $$
(42)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Socié, A., Dubois, F., Monerie, Y. et al. Multibody approach for reactive transport modeling in discontinuous-heterogeneous porous media. Comput Geosci 25, 1473–1491 (2021). https://doi.org/10.1007/s10596-021-10058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10058-x

Keywords

  • Reactive transport
  • Cracked porous media
  • Geochemistry
  • Zero-thickness interface
  • Multibody approach