Skip to main content
Log in

Mathematical properties of the foam flow in porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. A common way to describe the foam displacement is by using population balance models, which consider the foam texture as part of the gas phase. Numerical simulation of such equations presents serious difficulties connected to the high non-linearity in the fractional flow. The linear kinetic model is studied mathematically for large initial reservoir water saturation and all possibilities of injection saturation. It was observed that the model contains some structural instabilities, i.e., a small variation in some parameters leads to qualitatively different solutions. One of these solutions presented localized decay in relative gas mobility, indicating that this behavior is due to the equations’ mathematical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afsharpoor, A., Lee, G.S., Kam, S.I.: Mechanistic simulation of continuous gas injection period during surfactant-alternating-gas (SAG) processes using foam catastrophe theory. Chem. Eng. Sci. 65(11), 3615–3631 (2010)

    Article  Google Scholar 

  2. Ashoori, E., Marchesin, D., Rossen, W.R.: Dynamic foam behavior in the entrance region of a porous medium. Colloids Surf. A Physicochem. Eng. Asp. 377, 217–227 (2011)

    Article  Google Scholar 

  3. Ashoori, E., Marchesin, D., Rossen, W.R.: Roles of transient and local equilibrium foam behavior in porous media: traveling wave. Colloids Surf. A Physicochem. Eng. Asp. 377, 228–242 (2011)

    Article  Google Scholar 

  4. Ashoori, E., Marchesin, D., Rossen, W.R.: Multiple foam states and long-distance foam propagation in porous media. SPE J. 17(4), 1231–1245 (2012)

    Article  Google Scholar 

  5. Bertin, H.J., Quintard, M.Y., Castanier, L.M.: Development of a bubble-population correlation for foam-flow modeling in porous media. SPE J. 3(04), 356–362 (1998)

    Article  Google Scholar 

  6. Bretherton, F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10(2), 166–188 (1961)

    Article  Google Scholar 

  7. Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands, vol. 146. https://doi.org/10.2118/942107-G SPE-942107-G (1942)

  8. Chapiro, G., Marchesin, D., Schecter, S.: Combustion waves and Riemann solutions in light porous foam. J. Hyperbolic Differ. Equ. 11(02), 295–328 (2014)

    Article  Google Scholar 

  9. Chapiro, G., Senos, L.: Riemann solutions for counterflow combustion in light porous foam. Comput. Appl. Math. 37(2), 1721–1736 (2018)

    Article  Google Scholar 

  10. Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. Comput. Sci. Eng. Soc. Indust. Appl. Math. (2006)

  11. Colin, A., Giermanska-Kahn, J., Langevin, D., Desbat, B.: Foaming properties of modified ethoxylated nonionic surfactants. Langmuir 13(11), 2953–2959 (1997)

    Article  Google Scholar 

  12. de Paula, F.F., Quinelato, T., Igreja, I., Chapiro, G.: A numerical algorithm to solve the two-phase flow in porous media including foam displacement. Lect. Notes Comput. Sci. 12143, 18–31 (2020)

    Article  Google Scholar 

  13. Farajzadeh, R., Eftekhari, A.A., Hajibeygi, H., Kahrobaei, S., Van der Meer, J.M., Vincent-Bonnieu, S., Rossen, W.S.: Simulation of instabilities and fingering in surfactant alternating gas (SAG) foam enhanced oil recovery. J. Nat. Gas Sci. Eng. 34, 1191–1204 (2016)

    Article  Google Scholar 

  14. Friedmann, F., Chen, W.H., Gauglitz, P.A.: Experimental and simulation study of high-temperature foam displacement in porous media. SPE Reserv. Eng. 6, 37–45, 02 (1991)

    Article  Google Scholar 

  15. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1986)

    Google Scholar 

  16. Hematpur, H., Mahmood, S.M., Nasr, N.H., Elraies, K.A.: Foam flow in porous media: concepts, models and challenges. J. Nat. Gas Sci. Eng. 53, 163–180 (2018)

    Article  Google Scholar 

  17. Hirasaki, G.J., Lawson, J.B.: Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. SPE J. 25(02), 176–190 (1985)

    Google Scholar 

  18. Hirasaki, G.J., Miller, C.A., Szafranski, R., Lawson, J.B., Akiya, N. : Surfactant/foam process for aquifer remediation. In: International Symposium on Oilfield Chemistry. Society of Petroleum Engineers (1997)

  19. Islam, M.R., Farouq Ali, S.M.: Numerical simulation of foam flow in porous media. J. Can. Pet. Technol. 29(4), 47–51 (1990)

    Article  Google Scholar 

  20. Janssen, M.T.G., Torres Mendez, F.A., Zitha, P.L.J.: Mechanistic modeling of water-alternating-gas injection and foam-assisted chemical flooding for enhanced oil recovery. Ind. Eng. Chem. Res. 59(8), 3606–3616 (2020)

    Article  Google Scholar 

  21. Janssen, M.T.G., Pilus, R.M., Zitha, P.L.J.: A comparative study of gas flooding and foam-assisted chemical flooding in bentheimer sandstones. Transp. Porous Media 131(1), 101–134 (2020)

    Article  Google Scholar 

  22. Kam, S.I.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A Physicochem. Eng. Asp. 318(1), 62–77 (2008)

    Article  Google Scholar 

  23. Kam, S.I., Nguyen, Q.P., Li, Q., Rossen, W.R.: Dynamic simulations with an improved model for foam generation. SPE J. 12(1), 35–48 (2007)

    Article  Google Scholar 

  24. Kharabaf, H., Yortsos, Y.C.: Solution of hyperbolic equations involving chemical reactions. Ind. Eng. Chem. Res. 34(8), 2728–2732 (1995)

    Article  Google Scholar 

  25. Kovscek, A.R., Chen, Q., Gerritsen, M.: Modeling foam displacement with the local-equilibrium approximation: theory and experimental verification. SPE J. 15(01), 171–183 (2010)

    Article  Google Scholar 

  26. Kovscek, A.R., Patzek, T.W., Radke, C.J.: A mechanistic population balance model for transient and steady-state foam flow in boise sandstone. Chem. Eng. Sci. 50(23), 3783–3799 (1995)

    Article  Google Scholar 

  27. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs, New Jersey (1989)

    Google Scholar 

  28. Lambert, W., Alvarez, A., Ledoino, I., Tadeu, D., Marchesin, D., Bruining, J.: Mathematics and numerics for balance partial differential-algebraic equations (pdaes). J. Sci. Comput. 84(2), 1–56 (2020)

    Article  Google Scholar 

  29. Ma, K., Lopez-Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of parameters for the simulation of foam flow through porous media. part 1: the dry-out effect. Energ. Fuel 27(5), 2363–2375 (2013)

    Article  Google Scholar 

  30. Marsden, S.S., Khan, S.A.: The flow of foam through short porous media and apparent viscosity measurements, vol. 6. https://doi.org/10.2118/1319-PA SPE-1319-PA (1966)

  31. Oleĭnik, O.A.: On the uniqueness of generalized solution of Cauchy problem for non linear system of equations ocurring in mechanics. Uspekhi Mat Nauk 12, 169–176 (1957)

    Google Scholar 

  32. Ozbag, F., Schecter, S., Chapiro, G.: Traveling waves in a simplified gas-solid combustion model in porous media. Adv. Differ. Equ. 23(5/6), 409–454 (2018)

    Google Scholar 

  33. Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. Soc. Pet. Eng. J. 20(3), 191–205 (1980)

    Article  Google Scholar 

  34. Rossen, W.R.: Foams in enhanced oil recovery. Foams: Theory, Measurements and Applications 57, 413–464 (1996)

    Google Scholar 

  35. Rossen, W.R.: Numerical challenges in foam simulation: a review. In: Proceedings - SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2013)

  36. Rossen, W.R., Gauglitz, P.A.: Percolation theory of creation and mobilization of foams in porous media. AIChE J. 36(8), 1176–1188 (1990)

    Article  Google Scholar 

  37. Shan, D., Rossen, W.R.: Optimal injection strategies for foam ior. SPE J. 9(02), 132–150 (2004)

    Article  Google Scholar 

  38. Simjoo, M., Dong, Y., Andrianov, A., Talanana, M., Zitha, P.L.J.: Novel insight into foam mobility control. SPE J. 18(3), 416–427 (2013)

    Article  Google Scholar 

  39. Simjoo, M., Zitha, P.L.J.: Modeling of foam flow using stochastic bubble population model and experimental validation. Transp. Porous Media 107(3), 799–820 (2015)

    Article  Google Scholar 

  40. Smoller, J.: Shock Waves and Reaction—Diffusion Equations, vol. 258. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  41. Sotomayor, J.: Curvas definidas por equações diferenciais no plano. Instituto de matemática Pura e Aplicada (1981)

  42. Tang, J., Castañeda, P., Marchesin, D., Rossen, W.R.: Three-phase fractional-flow theory of foam-oil displacement in porous media with multiple steady states. Water Resour. Res. (2019)

  43. Thorat, R., Bruining, H.: Foam flow experiments. i. estimation of the bubble generation-coalescence function. Transp. Porous Media 112(1), 53–76 (2016)

    Article  Google Scholar 

  44. van der Meer, J.M., Farajzadeh, R., Jansen, J.D.: Influence of foam on the stability characteristics of immiscible flow in porous media. In: SPE Reservoir Simulation Conference. February, Montgomery, Texas, USA. Society of Petroleum Engineers, pp 20–22 (2017)

  45. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling wave solutions of parabolic systems, vol. 140. American Mathematical Soc. (1994)

  46. Walsh, M.P., Lake, L.W.: Applying fractional flow theory to solvent flooding and chase fluids. J. Pet. Sci. Eng. 2(4), 281–303 (1989)

    Article  Google Scholar 

  47. Wang, S., Mulligan, C.N.: An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57(9), 1079–1089 (2004)

    Article  Google Scholar 

  48. Wong, H., Radke, C.J., Morris, S.: The motion of long bubbles in polygonal capillaries. part 2. drag, fluid pressure and fluid flow. J. Fluid Mech. 292, 95–110 (1995)

    Article  Google Scholar 

  49. Zhou, Z.H., Rossen, W.R.: Applying fractional-flow theory to foams for diversion in matrix acidization. SPE Prod. Facil. 9(01), 29–35 (1994)

    Article  Google Scholar 

  50. Zitha, P.L.J.: A new stochastic bubble population model for foam in porous media. In: SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers (2006)

Download references

Acknowledgements

The authors are grateful to Prof. Dan Marchesin and Prof. Pacelli Zitha for their suggestions and advice during this work elaboration. The authors thank A. Chapiro for pointing some typos and improving the language of this text. The authors thank the reviewer for valuable suggestions improving this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigori Chapiro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was carried out in association with the ongoing R&D project registered as ANP 20715-9, “Modelagem matemá-tica e computacional de injeção de espuma usada em recuperação avançada de petróleo” (Universidade Federal de Juiz de Fora (UFJF) / Shell Brasil / ANP) – Mathematical and computational modeling of foam injection as an enhanced oil recovery technique applied to Brazil pre-salt reservoirs, sponsored by Shell Brasil under the ANP R&D levy as “Compromisso de Investimentos com Pesquisa e Desenvolvimento”. This project is carried out in partnership with Petrobras. G.C. was supported in part by CNPq grant 303245/2019-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, L.F., Zavala, R.Q. & Chapiro, G. Mathematical properties of the foam flow in porous media. Comput Geosci 25, 515–527 (2021). https://doi.org/10.1007/s10596-020-10020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-10020-3

Keywords

Mathematics Subject Classification (2010)

Navigation