Skip to main content

Advertisement

SpringerLink
Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers
Download PDF
Download PDF
  • Original Paper
  • Open Access
  • Published: 02 September 2020

Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers

  • Laura Blank1,
  • Ernesto Meneses Rioseco2,3,
  • Alfonso Caiazzo  ORCID: orcid.org/0000-0002-7125-86451 &
  • …
  • Ulrich Wilbrandt1 

Computational Geosciences volume 25, pages 67–104 (2021)Cite this article

  • 1592 Accesses

  • 14 Citations

  • Metrics details

Abstract

Geothermal district heating development has been gaining momentum in Europe with numerous deep geothermal installations and projects currently under development. With the increasing density of geothermal wells, questions related to the optimal and sustainable reservoir exploitation become more and more important. A quantitative understanding of the complex thermo-hydraulic interaction between tightly deployed geothermal wells in heterogeneous temperature and permeability fields is key for a maximum sustainable use of geothermal resources. Motivated by the geological settings of the Upper Jurassic aquifer in the Greater Munich region, we develop a computational model based on finite element analysis and gradient-free optimization to simulate groundwater flow and heat transport in hot sedimentary aquifers, and numerically investigate the optimal positioning and spacing of multi-well systems. Based on our numerical simulations, net energy production from deep geothermal reservoirs in sedimentary basins by smart geothermal multi-well arrangements provides significant amounts of energy to meet heat demand in highly urbanized regions. Our results show that taking into account heterogeneous permeability structures and a variable reservoir temperature may drastically affect the results in the optimal configuration. We demonstrate that the proposed numerical framework is able to efficiently handle generic geometrical and geological configurations, and can be thus flexibly used in the context of multi-variable optimization problems. Hence, this numerical framework can be used to assess the extractable geothermal energy from heterogeneous deep geothermal reservoirs by the optimized deployment of smart multi-well systems.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Limberger, J., Boxem, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beekman, F., Cloetingh, S., van Wees, J.-D.: Geothermal energy in deep aquifers: a global assessment of the resource base for direct heat utilization. Renew. Sustain. Energy Rev. 82, 961–975 (2018)

    Google Scholar 

  2. Moeck, I.S.: Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 37, 867–882 (2014)

    Google Scholar 

  3. Bertani, R., Dumas, P., Bonafin, J., Flóvenz, O.G., Jónsdóttir, B., Manzella, A., Donato, A., Gola, G., Santilano, A., Trumpy, E., Simsek, S., van Wees, J-D, Pluymaekers, M., Veldkamp, H., van Gessel, S., Bonté, D, Rybach, L., Sanner, B., Angelino, L.: Perspectives for Geothermal Energy in Europe. World Scientific Publishing Europe Ltd., New York (2017)

    Google Scholar 

  4. Ungemach, P., Antics, M.: Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments. In: Proceedings of the World Geothermal Congress (2015)

  5. Antics, M., Bertani, R., Sanner, B.: Summary of EGC 2016 Country Update Reports on Geothermal Energy in Europe. In: Proceedings of the European Geothermal Congress (2016)

  6. Antics, M., Sanner, B.: Status of Geothermal Energy Use and Resources in Europe. In: Proceedings of the European Geothermal Congress (2007)

  7. Hurter, S., Schellschmidt, R.: Atlas of geothermal resources in Europe. Geothermics 32(4), 779–787 (2003)

    Google Scholar 

  8. Lund, J.W., Boyd, T.L.: Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60, 66–93 (2016)

    Google Scholar 

  9. Agemar, T., Alten, J.-A., Ganz, B., Kuder, J., Kühne, K., Schumacher, S., Schulz, R.: The Geothermal Information System for Germany - GeotIS. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165(2), 129–144 (2014)

    Google Scholar 

  10. Agemar, T., Weber, J., Schulz, R.: Deep geothermal energy production in Germany. Energies 7(7), 4397–4416 (2014)

    Google Scholar 

  11. Dussel, M., Lüschen, E., Thomas, R., Agemar, T., Fritzer, T., Sieblitz, S., Huber, B., Birner, J., Schulz, R.: Forecast for thermal water use from Upper Jurassic carbonates in the Munich region (South German Molasse Basin). Geothermics 60, 13–30 (2016)

    Google Scholar 

  12. Weber, J., Born, H., Moeck, I.: Geothermal Energy Use, Country Update for Germany 2016 - 2018. In: Proceedings of the European Geothermal Congress (2019)

  13. Alten, J.-A., Thorsten, A., Gramenz, J., Tribbensee, M.: GeotIS: Free Access to Maps and 3D Models for Geothermal Project Planning in Germany. In: Proceedings of the European Geothermal Congress (2019)

  14. Hecht, C., Pletl, C.: Das Verbundprojekt GRAME - Wegweiser für eine geothermische Wärmeversorgung urbaner Ballungsräume. Geothermische Energie, 82(2) (2015)

  15. Buness, H., Von Hartmann, H., Lüschen, E, Meneses Rioseco, E., Wawerzinek, B., Ziesch, J., Thomas, R.: GeoParaMol: Eine Integration verschiedener Methoden zur Reduzierung des Fündigkeitsrisikos in der bayrischen Molasse. Geothermische Energie 85, 22–23 (2016)

    Google Scholar 

  16. Meneses Rioseco, E., Ziesch, J., Wawerzinek, B., Von Hartmann, H., Thomas, R., Buness, H.: 3-D Geothermal Reservoir Modeling of the Upper Jurassic Carbonate Aquifer in the City of Munich (Germany) under the Thermal-Hydraulic Influence of Optimized Geothermal Multi-Well Patterns - Project GeoParaMol. In: Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering (2018)

  17. Meneses Rioseco, E., Ziesch, J., Von Hartmann, H., Buness, H.: Geothermal reservoir modelling and simulation of the Upper Jurassic aquifer for district heating in the city of Munich (Germany). In: Proceedings of the European Geothermal Congress (2019)

  18. Willems, C.J.L., Nick, H.M., Weltje, G.J., Bruhn, D.F.: An evaluation of interferences in heat production from low enthalpy geothermal doublets systems. Energy 135, 500–512 (2017)

    Google Scholar 

  19. Willems, C.J.L., Nick, H.M., Goense, T., Bruhn, D.F.: The impact of reduction of doublet well spacing on the net present value and the life time of fluvial hot sedimentary aquifer doublets. Geothermics 68, 54–66 (2017)

    Google Scholar 

  20. Park, H.-Y., Yang, C., Al-Aruri, A.D., Fjerstad, P.A.: Improved decision making with new efficient workflows for well placement optimization. J. Pet. Sci. Eng. 152, 81–90 (2017)

    Google Scholar 

  21. Sayyafzadeh, M.: Reducing the computation time of well placement optimisation problems using self-adaptive metamodelling. J. Pet. Sci. Eng. 151, 143–158 (2017)

    Google Scholar 

  22. Dossary, M.A.A., Nasrabadi, H.: Well placement optimization using imperialist competitive algorithm. J. Pet. Sci. Eng. 147, 237–248 (2016)

    Google Scholar 

  23. Liu, D., Sun, J.: The Control Theory and Application for Well Pattern Optimization of Heterogeneous Sandstone Reservoirs. Petroleum Industry Press and Springer-Verlag, Berlin Heidelberg (2017). ISBN 978-3-662-53287-4

    Google Scholar 

  24. Li, T., Shiozawa, S., McClure, M.W.: Thermal breakthrough calculations to optimize design of a multiple-stage Enhanced Geothermal System. Geothermics 64, 455–465 (2016)

    Google Scholar 

  25. Shook, G.M.: Predicting thermal breakthrough in heterogeneous media from tracer tests. Geothermics 30(6), 573–589 (2001)

    Google Scholar 

  26. Blöcher, M.G., Zimmermann, G., Moeck, I., Brandt, W., Hassanzadegan, A., Magri, F.: 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10 (3), 406–421 (2010). https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-8123.2010.00284.x

    Google Scholar 

  27. O’Sullivan, M.J., Pruess, K., Lippmann, M.J.: State of the art of geothermal reservoir simulation. Geothermics 30(4), 395–429 (2001)

    Google Scholar 

  28. Bödvarsson, G.S., Tsang, C.F.: Injection and thermal breakthrough in fractured geothermal reservoirs. Journal of Geophysical Research: Solid Earth 87(B2), 1031–1048 (1982). https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB087iB02p01031

    Google Scholar 

  29. O’Sullivan, M.J.: Geothermal reservoir simulation. Int. J. Energy Res. 9(3), 319–332 (1985). https://onlinelibrary.wiley.com/doi/pdf/10.1002/er.4440090309

    Google Scholar 

  30. Crooijmans, R.A., Willems, C.J.L., Nick, H.M., Bruhn, D.F.: The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs. Geothermics 64, 209–219 (2016)

    Google Scholar 

  31. Saeid, S., Al-Khoury, R., Nick, H.H.M., Barends, F.: Experimentalnumerical study of heat flow in deep low-enthalpy geothermal conditions. Renew. Energy 62, 716–730 (2014)

    Google Scholar 

  32. Saeid, S., Al-Khoury, R., Nick, H.H., Hicks, M.A.: A prototype design model for deep low-enthalpy hydrothermal systems. Renew. Energy 77, 408–422 (2015)

    Google Scholar 

  33. Rostamian, A., Jamshidi, S., Zirbes, E.: The development of a novel multi-objective optimization framework for non-vertical well placement based on a modified non-dominated sorting genetic algorithm-II. Comput. Geosci. 23, 1065–1085 (2019)

    Google Scholar 

  34. Zhang, L., Deng, Z., Zhang, K., Long, T., Desbordes, J., Sun, H., Yang, Y.: Well-placement optimization in an enhanced geothermal system based on the fracture continuum method and 0-1 programming. Energies 12, 709 (2019)

    Google Scholar 

  35. Kahrobaei, S., Fonseca, R.M., Willems, C.J.L., Wilschut, F., van Wees, J.D.: Regional scale geothermal field development optimization under geological uncertainties. In: Proceedings of the European Geothermal Congress (2019)

  36. McDonald, M.G., Harbaugh, A.W.: The history of MODFLOW. Ground Water 41, 280–283 (2005)

    Google Scholar 

  37. Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., Berre, I.: Porepy: An open-source software for simulation of multiphysics processes in fractured porous media (2019)

  38. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project Version 1.5. Archive of Numerical Software 3, 100 (2015)

    Google Scholar 

  39. Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing, S., Nolte, M., Piatkowski, M., Sander, O.: The distributed and unified numerics environment, version 2.4. Archive of Numerical Software 4(100), 13–29 (2016)

    Google Scholar 

  40. Arndt, D., Bangerth, W., Clevenger, T.C., Davydov, D., Fehling, M., Garcia-Sanchez, D., Harper, G., Heister, T., Heltai, L., Kronbichler, M., Kynch, R.M., Maier, M., Pelteret, J.-P., Turcksin, B., Wells, D.: The deal.II library, version 9.1. J. Numer. Math. 27, 203–213 (2019). accepted

    Google Scholar 

  41. Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Rainer, H., Nagel, T.: Development of open-source porous media simulators: principles and experiences. Transp. Porous Media 130(1), 337–361 (2019)

    Google Scholar 

  42. Diersch, H.-J.G.: FEFLOW. Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer Science + Business Media; Springer Heidelberg Dordrecht, London (2014). ISBN 978-3-642-387388

    Google Scholar 

  43. Ghasemizadeh, R., Yu, X., Butscher, C., Hellweger, F., Padilla, I., Alshawabkeh, A.: Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers. PLOS ONE 10(9), 1–21 (2015)

    Google Scholar 

  44. Birner, J.: Hydrogeologisches Modell des Malmaquifers im Süddeutschen Molassebecken - Hydrogeological model of the Malm aquifer in the South German Molasse Basin. Ph.D. Thesis, Freie Universität Berlin (2013)

  45. Wilbrandt, U., Bartsch, C., Ahmed, N., Alia, N., Anker, F., Blank, L., Caiazzo, A., Ganesan, S., Giere, S., Matthies, G., Meesala, R., Shamim, A., Venkatesan, J., John, V.: Parmoon – a modernized program package based on mapped finite elements. Comput. Math. Appl. 74, 74–88 (2016)

    Google Scholar 

  46. Rybach, L.: Geothermal systems, conductive heat flow, geothermal anomalies. In: Geothermal Systems: Principles and case histories, pp. 3–31. John Wiley & Sons (1981)

  47. Haenel, R., Rybach, L., Stegena, L. (eds.): Fundamentals of geothermics. Springer, Netherlands (1988)

    Google Scholar 

  48. Stober, I., Bucher, K.: Geothermal Energy. From Theoretical Models to Exploration and Development. Springer-Verlag, Berlin Heidelberg (2013). ISBN 978-3-642-13352-7

    Google Scholar 

  49. Ernst, H. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-40831-3 (2010)

  50. Förster, A., Merriam, D.F.: Geothermics in Basin Analysis, Computer Applications in the Earth Sciences. Springer US; Kluwer Academic/Plenum Publishers. ISBN 978-1-4613-7154-0 (1999)

  51. Beardsmore, G.R., Cull, J.P.: Crustal Heat Flow: a Guide to Measurement and Modelling, Cambridge University Press (2001)

  52. Haenel, R., Stegena, L., Rybach, L.: Handbook of Terrestrial Heat-Flow Density dDtermination: with Guidelines and Recommendations of the International Heat Flow Commission. Springer, Netherlands (2012)

    Google Scholar 

  53. Agemar, T., Schellschmidt, R., Schulz, R.: Subsurface temperature distribution in Germany. Geothermics 44, 65–77 (2012)

    Google Scholar 

  54. Schütz, F., Winterleitner, G., Huenges, E.: Geothermal exploration in a sedimentary basin: new continuous temperature data and physical rock properties from northern Oman. Geothermal Energy 6(1), 5 (2018)

    Google Scholar 

  55. Kukkonen, I.T., Jõeleht, A.: Weichselian temperatures from geothermal heat flow data. J. Geophys. Res. 108, 2163, B3 (2003). https://doi.org/10.1029/2001JB001579

    Google Scholar 

  56. Förster, A: Analysis of borehole temperature data in the Northeast German Basin: continuous logs versus bottom-hole temperatures. Pet. Geosci. 7, 241–254 (2001)

    Google Scholar 

  57. Koch, A., Jorand, R., Vogt, C., Arnold, J.-C., Mottaghy, D., Pechnig, R., Clauser, C.: Erstellung statistisch abgesicherter termischer hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland. Phase 2 - Westliches Nordrhein-Westfalen und bayerisches Molassebecken, RWTH Aachen (2009)

  58. Fuchs, S., Förster, A.: Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chemie der Erde – Geochemistry 70, 13–22 (2010)

    Google Scholar 

  59. Clauser, C., Koch, A., Hartmann, A., Jorand, R., Rath, V., Wolf, A., Mottaghy, D., Pechnig, R.: Erstellung statistisch abgesicherter termischer hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland. Phase 1 - Westliche Molasse und nördlich angrenzendes Süddeutsches Schichtstufenland, RWTH Aachen (2006)

  60. Cermak, V., Huckenholz, H.-G., Rybach, L., Schmid, R., Schopper, J.-R., Schuch, M., Stöfler, D, Wohlenberg, J. In: Angenheister, G. (ed.): Physical Properties of Rocks, vol. 1a. Springer, Heidelberg (1982)

  61. Sebastian, H., Götz, A.E., Sass, I.: Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool. Geothermal Energy Science 3, 41–49 (2015)

    Google Scholar 

  62. Labus, M., Labus, K.: Thermal conductivity and diffusivity of fine-grained sedimentary rocks. J. Therm. Anal. Calorim. 132(3), 1669–1676 (2018)

    Google Scholar 

  63. Clauser, C., Huenges, E.: Thermal Conductivity of Rocks and Minerals. In: Rock Physics & Phase Relations, pp. 105–126. American Geophysical Union (AGU) (2013)

  64. Fuchs, S.: The variability of rock thermal properties in sedimentary basins and the impact on temperature modelling – a Danish example. Geothermics 76, 1–14 (2018)

    Google Scholar 

  65. Mraz, E., Wolfgramm, M., Moeck, I., Thuro, K.: Detailed fluid inclusion and stable isotope analysis on deep carbonates from the North Alpine Foreland Basin to constrain paleofluid evolution. Geofluids 2019, 23 (2019)

    Google Scholar 

  66. Jobmann, M., Schulz, R.: Hydrogeothermische Energiebilanz und Grundwasserhaushalt des Malmkarstes im süddeutschen Molassebecken, Niedersächsisches Landesamt für Bodenforschung. Archive Nr. 105040 (1989)

  67. Dussel, M., Moeck, I., Wolfgramm, M., Straubinger, R.: Characterization of a Deep Fault Zone in Upper Jurassic Carbonates of the Northern Alpine Foreland Basin for Geotherma Production (South Germany). In: Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering (2018)

  68. Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R., Schulz, R.: 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany. Geothermics 50, 167–179 (2014)

    Google Scholar 

  69. Haenel, R., Kleefeld, M., Koppe, I.: Geothermisches Energiepotential, Pilotstudie: Abschätzung der geothermischen Energievorräte an ausgewählten Beispielen in der Bundesrepublik Deutschland, Final report (Abschlussberricht), Bericht NLfB, Archive Nr. 96276, Bd. I-IV. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany (1984)

  70. Haenel, R., Staroste, E.: Atlas of Geothermal Resources in the European Community, Austria and Switzerland, Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany (1988)

  71. Haenel, E.R. (ed.): The Urach geothermal project (Swabian Alb, Germany). Schweizerbart Science Publishers, Stuttgart, Germany (1982). ISBN 9783510651078

    Google Scholar 

  72. Hurter, S., Haenel, R.: Atlas of Geothermal Resources in Europe: Planning Exploration and Investments. In: Proceedings of the World Geothermal Congress (2000)

  73. Majorowicz, J., Wybraniec, S.: New terrestrial heat flow map of Europe after regional paleoclimatic correction application. Int. J. Earth Sci. 100(4), 881–887 (2011)

    Google Scholar 

  74. Cacace, M., Scheck-Wenderoth, M., Noack, V., Cherubini, Y., Schellschmidt, R.: Modelling the surface heat flow distribution in the area of Brandenburg (Northern Germany). Energy Procedia 40, 545–553 (2013)

    Google Scholar 

  75. Noack, V., Cherubini, Y., Scheck-Wenderoth, M., Lewerenz, B., Höding, T, Simon, A., Moeck, I.: Assessment of the present-day thermal field (NE German Basin) – inferences from 3D modelling. Chemie der Erde – Geochemistry 70, 47–62 (2010)

    Google Scholar 

  76. Fritzer, T.: Bayerischer Geothermieatlas - Hydrothermale Energiegewinnung: Technik, wirtschaftliche Aspekte, Risiken, hydrothermale Grundwasserleiter in Bayern, Untergrundtemperaturen in Bayern. Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie, Munich (2010)

  77. Agar, S.M., Geiger, S.: Fundamental controls on fluid flow in carbonates: current workflows to emerging technologies. Geol. Soc. Lond., Spec. Publ. 406(1), 1–59 (2015). https://sp.lyellcollection.org/content/406/1/1.full.pdf

    Google Scholar 

  78. Agar, S.M., Hampson, G.J.: Fundamental controls on flow in carbonates: an introduction. Pet. Geosci. 20(1), 3–5 (2014). https://pg.lyellcollection.org/content/20/1/3.full.pdf

    Google Scholar 

  79. Cacas, M.C., Daniel, J.M.: Nested geological modelling of naturally fractured reservoirs. Pet. Geosci. 7(5), 43–52 (2001)

    Google Scholar 

  80. Beyer, D., Kunkel, C., Aehnelt, M., Pudlo, D., Voigt, T., Nover, G., Gaupp, R.: Influence of depositional environment and diagenesis on petrophysical properties of clastic sediments (Buntsandstein of the Thuringian Syncline, Central Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165(3), 345–365 (2014)

    Google Scholar 

  81. Dethlefsen, F., Ebert, M., Dahmke, A.: A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. Environmental Earth Sciences 71(5), 2227–2244 (2014)

    Google Scholar 

  82. Kuder, J., Binot, F., Hübner, W, Orilski, J., Wonik, T., Schulz, R.: Für die Geothermie wichtige hydraulische Parameter von Gesteinen des Valangin und der Bückeberg-Formation (Wealden) in Nordwestdeutschland. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165(3), 455–467 (2014)

    Google Scholar 

  83. Kunkel, C., Aehnelt, M., Pudlo, D., Kukowski, N., Totsche, K.U., Gaupp, R.: Subsurface aquifer heterogeneities of Lower Triassic clastic sediments in central Germany. Mar. Pet. Geol. 97, 209–222 (2018)

    Google Scholar 

  84. Olivarius, M., Weibel, R., Hjuler, M.L., Kristensen, L., Mathiesen, A., Nielsen, L.H., Kjøller, C.: Diagenetic effects on porosity-permeability relationships in red beds of the Lower Triassic Bunter Sandstone Formation in the North German Basin. Sediment. Geol. 321, 139–153 (2015)

    Google Scholar 

  85. Stober, I.: Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen. Schweizerbart Science Publishers, Stuttgart, Germany (1986)

    Google Scholar 

  86. Stober, I., Jodocy, M., Hintersberger, B.: Comparison of hydraulic conductivities determined with different methods in the Upper Jurassic of the southwest German Molasse Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 164(4), 663–679 (2013)

    Google Scholar 

  87. Ortiz Rojas, A.E., Dussel, M., Moeck, I.: Borehole geophysical characterisation of a major fault zone in the geothermal Unterhaching gt 2 well, South German Molasse Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 169(3), 445–463 (2018)

    Google Scholar 

  88. Frisch, H., Huber, B.: Versuch einer Bilanzierung des Thermalwasservorkommens im Malmkarst des süddeutschen Molassebeckens. Hydrogeologie und Umwelt 20, 25–43 (2000)

    Google Scholar 

  89. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1(1), 27–34 (1949)

    Google Scholar 

  90. Popov, P., Efendiev, Y., Qin, G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. Comput. Phys. 6(1), 162–184 (2009) MR2537310

    Google Scholar 

  91. Joodi, A., Sizaret, S., Binet, S., A., B., Albric, P., Lepiller, M.: Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer (Val d’Orl,ans, France). Hydrogeol. J. 18, 295–309 (2009)

    Google Scholar 

  92. Willems, C.J.L., Goense, T., Nick, H.M., Bruhn, D.F.: The Relation Between Well Spacing and Net Present Value in Fluvial Hot Sedimentary Aquifer Geothermal Doublets: a West Netherlands Basin Case Study. In: Proceedings of the 41st Workshop on Geothermal Resevoir Engineering (2016)

  93. Peskin, C.S.: The immersed boundary method. Acta Numerica 11(1), 479–517 (2002)

    Google Scholar 

  94. D’Angelo, C.: Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012)

    Google Scholar 

  95. Cattaneo, L., Zunino, P.: A computational model of drug delivery through microcirculation to compare different tumor treatments. International Journal for Numerical Methods in Biomedical Engineering 30(11), 1347–1371 (2014)

    Google Scholar 

  96. Scheidegger, A.E.: General theory of dispersion in porous media. Journal of Geophysical Research (1896-1977) 66(10), 3273–3278 (1961), available at https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JZ066i010p03273

    Google Scholar 

  97. Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Google Scholar 

  98. Ern, A., Guermond, J.-L.: Theory and practice of finite elements. Applied Mathematical Sciences, vol. 159. Springer-Verlag, New York (2004)

    Google Scholar 

  99. Blank, L., Caiazzo, A., Chouly, F., Lozinski, A., Mura, J.: Analysis of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy problems. ESAIM: Mathematical Modeling and Numerical Analysis (M2AN) 52(6), 2149–2185 (2018)

    Google Scholar 

  100. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Global Optim. 21(1), 27–37 (2001)

    Google Scholar 

  101. Ganesan, S., John, V., Matthies, G., Meesala, R., Shamim, A., Wilbrandt, U.: An Object Oriented Parallel Finite Element Scheme for Computations of PDEs: Design and Implementation. In: 2016 IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW), pp. 106–115 (2016)

  102. Llanos, E.M., Zarrouk, S.J., Hogarth, R.A.: Simulation of the Habanero Enhanced Geothermal System (EGS), Australia. In: Proceedings of the World Geothermal Congress (2015)

  103. Vörös, R., Weidler, R., De Graaf, L., Wyborn, D.: Thermal modelling of long term circulation of multi-well development at the Cooper Basin hot fractured rock (HFR) project and current proposed scale-up program. In: Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering (2007)

  104. Johnson, S.G.: The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt

  105. Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

  106. Ahrens, J., Geveci, B., Law, C. In: Charles D. Hansen, Chris R. Johnson (eds.): 36-ParaView: An End-User Tool for Large Data Visualization. Visualization Handbook, pp. 717–731. Butterworth-Heinemann, Burlington (2005). isbn 978-0-12-387582-2

Download references

Funding

Open Access funding provided by Projekt DEAL. This work has been partially supported by a Seed Grant of the Leibniz Mathematical Modeling and Simulation (MMS) Network.

Achieving completion of this assignment was partly thanks to the GeoParaMoL project at LIAG (Hanover), which is a subproject of the GRAME project and would not have been possible without the financial support of the German Federal Ministry for Economic Affairs and Energy (BMWi - FKZ 0325787B).

Author information

Authors and Affiliations

  1. Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117, Berlin, Germany

    Laura Blank, Alfonso Caiazzo & Ulrich Wilbrandt

  2. Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655, Hannover, Germany

    Ernesto Meneses Rioseco

  3. Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655, Hannover, Germany

    Ernesto Meneses Rioseco

Authors
  1. Laura Blank
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ernesto Meneses Rioseco
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alfonso Caiazzo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ulrich Wilbrandt
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alfonso Caiazzo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blank, L., Meneses Rioseco, E., Caiazzo, A. et al. Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers. Comput Geosci 25, 67–104 (2021). https://doi.org/10.1007/s10596-020-09989-8

Download citation

  • Received: 22 November 2019

  • Accepted: 21 July 2020

  • Published: 02 September 2020

  • Issue Date: February 2021

  • DOI: https://doi.org/10.1007/s10596-020-09989-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Porous and fractured geothermal reservoir modeling
  • Geothermal multi-well configurations
  • Finite element method
  • Thermo-hydraulic coupling
  • Optimization
  • Open-source software

PACS

  • 65M60
  • 76S05
  • 86-08
  • 86A20
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.