Skip to main content

Microbially mediated kinetic sulfur isotope fractionation: reactive transport modeling benchmark

Abstract

Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate-reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42−) over the heavier isotopologue (S34O42−). Detection of isotopic shifts has been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing heavy metal and radionuclide bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. We developed a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of three problem levels and is based on a large-scale laboratory column experimental study of organic carbon amended sulfate reduction in soils from a uranium-contaminated aquifer. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and iron-sulfide reactions are included in the problem set. This benchmark also explores the different mathematical formulations in the representation of kinetic sulfur isotope fractionation as employed in the different RTMs. Participating RTM codes are the following: CrunchTope, TOUGHREACT, PHREEQC, and PHT3D. Across all problem levels, simulation results from all RTMs demonstrate reasonable agreement.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Canfield, D.E., Thamdrup, B., Fleischer, S.: Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr. 43(2), 253–264 (1998). https://doi.org/10.4319/lo.1998.43.2.0253

    Article  Google Scholar 

  2. 2.

    Canfield, D.E.: Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta. 65(7), 1117–1124 (2001). https://doi.org/10.1016/S0016-7037(00)00584-6

    Article  Google Scholar 

  3. 3.

    Sim, M.S., Bosak, T., Ono, S.: Large sulfur isotope fractionation does not require disproportionation. Science. 333(6038), 74–77 (2011). https://doi.org/10.1126/science.1205103

    Article  Google Scholar 

  4. 4.

    Benner, S., Blowes, D., Ptacek, C., Mayer, K.: Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl. Geochem. 17(3), 301–320 (2002). https://doi.org/10.1016/S0883-2927(01)00084-1

    Article  Google Scholar 

  5. 5.

    Williams, K.H., Long, P.E., Davis, J.A., Wilkins, M.J., N’Guessan, A.L., Steefel, C.I., Yang, L., Newcomer, D., Spane, F.A., Kerkhof, L.J., Mcguinness, L., Dayvault, R., Lovley, D.R.: Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol J. 28(5–6), 519–539 (2011). https://doi.org/10.1080/01490451.2010.520074

    Article  Google Scholar 

  6. 6.

    Fuller, D.C., Suruda, A.J.: Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994. J. Occup. Environ. Med. 42, 939–942 (2000). https://doi.org/10.1097/00043764-200009000-00019

    Article  Google Scholar 

  7. 7.

    Arora, B., Dwivedi, D., Hubbard, S.S., Steefel, C.I., Williams, K.H.: Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 85, 27–41 (2016). https://doi.org/10.1016/j.envsoft.2016.08.005

    Article  Google Scholar 

  8. 8.

    Druhan, J.L., Steefel, C.I., Molins, S., Williams, K.H., Conrad, M.E., Depaolo, D.J.: Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fractionation. Environ. Sci. Technol. 46(16), 8895–8902 (2012). https://doi.org/10.1021/es302016p

    Article  Google Scholar 

  9. 9.

    Hubbard, C.G., Cheng, Y., Engelbrekston, A., Druhan, J.L., Li, L., Ajo-Franklin, J.B., Coates, J.D., Conrad, M.E.: Isotopic insights into microbial sulfur cycling in oil reservoirs. Front. Microbiol. 5(480), 1–12 (2014). https://doi.org/10.3389/fmicb.2014.00480

    Article  Google Scholar 

  10. 10.

    Druhan, J.L., Steefel, C.I., Conrad, M.E., DePaolo, D.J.: A large column analog experiment of stable isotope variations during reactive transport: I. a comprehensive model of sulfur cycling and δ34S fractionation. Geochim. Cosmochim. Acta. 124, 366–393 (2014). https://doi.org/10.1016/j.gca.2013.08.037

    Article  Google Scholar 

  11. 11.

    Van Breukelen, B.M., Prommer, H.: Beyond the rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ. Sci. Technol. 42(7), 2457–2463 (2008). https://doi.org/10.1021/es071981j

    Article  Google Scholar 

  12. 12.

    Maggi, F., Riley, W.J.: Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: theory and application to denitrification in soils. J Geophys Res: Biogeo. 114(G4), 1–13 (2009). https://doi.org/10.1029/2008JG000878

    Article  Google Scholar 

  13. 13.

    Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P.: Experimental determination of nitrogen kinetic isotope fractionation:some principles; illustration for the denitrification and nitrification processes. Plant Soil. 62(3), 413–430 (1981). https://doi.org/10.1007/BF02374138

    Article  Google Scholar 

  14. 14.

    Abe, Y., Hunkeler, D.: Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology? Environ. Sci. Technol. 1588–1596 (2006). https://doi.org/10.1021/es051128p

  15. 15.

    Druhan, J.L., Maher, K.: The influence of mixing on stable isotope ratios in porous media: a revised Rayleigh model. Water Resour. Res. 53(2), 1101–1124 (2017). https://doi.org/10.1002/2016WR019666

    Article  Google Scholar 

  16. 16.

    Dale, A.W., Brüchert, V., Alperin, M., Regnier, P.: An integrated sulfur isotope model for Namibian shelf sediments. Geochim. Cosmochim. Acta. 73(7), 1924–1944 (2009). https://doi.org/10.1016/j.gca.2008.12.015

    Article  Google Scholar 

  17. 17.

    Gibson, B.D., Amos, R.T., Blowes, D.W.: 34S/32S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling. Environ. Sci. Technol. 45(7), 2863–2870 (2011). https://doi.org/10.1021/es1038276

    Article  Google Scholar 

  18. 18.

    Wehrmann, L.M., Arndt, S., März, C., Ferdelman, T.G., Brunner, B.: The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3Ma. Geochim. Cosmochim. Acta. 109, 175–196 (2013). https://doi.org/10.1016/j.gca.2013.01.025

    Article  Google Scholar 

  19. 19.

    Cheng, Y., Hubbard, C.G., Li, L., Bouskill, N., Molins, S., Zheng, L., Sonnenthal, E., Conrad, M.E., Engelbrektson, A., Coates, J.D., Ajo-Franklin, J.B.: Reactive transport model of Sulfur cycling as impacted by perchlorate and nitrate treatments. Environ. Sci. Technol. 50(13), 7010–7018 (2016). https://doi.org/10.1021/acs.est.6b00081

    Article  Google Scholar 

  20. 20.

    Van Breukelen, B.M., Thouement, H.A.A., Stack, P.E., Vanderford, M., Philp, P., Kuder, T.: Modeling 3D-CSIA data: carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene. J. Contam. Hydrol. (2017). https://doi.org/10.1016/j.jconhyd.2017.07.003

  21. 21.

    Dwivedi, D., Arora, B., Molins, S., Steefel, C.I.: Benchmarking reactive transport codes for subsurface environmental problems, Groundwater Assessment, Modeling, and Management (2016)

  22. 22.

    Wanner, C., Druhan, J.L., Amos, R.T., Alt-Epping, P., Steefel, C.I.: Benchmarking the simulation of Cr isotope fractionation. Comput. Geosci. 19(3), 497–521 (2015). https://doi.org/10.1007/s10596-014-9436-9

    Article  Google Scholar 

  23. 23.

    Druhan, J.L., Guillon, S., Lincker, M., Arora, B.: Stable and radioactive carbon isotope partitioning in soils and saturated systems: a reactive transport modeling benchmark study. Comput. Geosci. 1–11 (2020). https://doi.org/10.1007/s10596-020-09937-6

  24. 24.

    Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19, 445–478 (2015). https://doi.org/10.1007/s10596-014-9443-x

    Article  Google Scholar 

  25. 25.

    Lasaga, A.C.: Chemical kinetics of water-rock interactions. J Geophys Res: Solid Earth. 89(B6), 4009–4025 (1984). https://doi.org/10.1029/JB089iB06p04009

    Article  Google Scholar 

  26. 26.

    Rittmann, B.E., McCarty, P.L., Rittman, B.E., McCarty, P.L.: Environmental Biotechnology: Principles and Applications. 1, 10 (2010)

    Google Scholar 

  27. 27.

    Van Breukelen, B.M., Hunkeler, D., Volkering, F.: Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ. Sci. Technol. 39(11), 4189–4197 (2005). https://doi.org/10.1021/es048973c

    Article  Google Scholar 

  28. 28.

    Anderson, R.T., et al.: Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69(10), 5884–5891 (2003). https://doi.org/10.1128/AEM.69.10.5884-5891.2003

    Article  Google Scholar 

  29. 29.

    Vrionis, H.A.e. a.: Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71(10), 6308–6318 (2005). https://doi.org/10.1128/AEM.71.10.6308-6318.2005

    Article  Google Scholar 

  30. 30.

    Yabusaki, S.B., Fang, Y., Long, P.E., Resch, C.T., Peacock, A.D., Komlos, J., Jaffe, P.R., Morrison, S.J., Dayvault, R.D., White, D.C., Anderson, R.T.: Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J. Contam. Hydrol. 93(1–4), 216–235 (2007). https://doi.org/10.1016/j.jconhyd.2007.02.005

    Article  Google Scholar 

  31. 31.

    Arora, B., Spycher, N.F., Steefel, C.I., Molins, S., Bill, M., Conrad, M.E., Dong, W., Faybishenko, B., Tokunaga, T.K., Wan, J., Williams, K.H., Yabusaki, S.B.: Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry. 127(2–3), 367–396 (2016). https://doi.org/10.1007/s10533-016-0186-8

    Article  Google Scholar 

  32. 32.

    Dwivedi, D., Arora, B., Steefel, C.I., Dafflon, B., Versteeg, R.: Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour. Res. 54(1), 205–222 (2018). https://doi.org/10.1002/2017WR022346

    Article  Google Scholar 

  33. 33.

    Yabusaki, S.B., Wilkins, M.J., Fang, Y., Williams, K.H., Arora, B., Bargar, J., Beller, H.R., Bouskill, N.J., Brodie, E.L., Christensen, J.N., Conrad, M.E., Danczak, R.E., King, E., Soltanian, M.R., Spycher, N.F., Steefel, C.I., Tokunaga, T.K., Versteeg, R., Waichler, S.R., Wainwright, H.M.: Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ. Sci. Technol. 51(6), 3307–3317 204, 79–89 (2017). https://doi.org/10.1021/acs.est.6b04873

  34. 34.

    Fang, Y., Yabusaki, S.B., Morrison, S.J., Amonette, J.P., Long, P.E.: Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochim. Cosmochim. Acta. 73, 6029–6051 (2009). https://doi.org/10.1016/j.gca.2009.07.019

    Article  Google Scholar 

  35. 35.

    Li, L., Steefel, C.I., Williams, K.H., Wilkins, M.J., Hubbard, S.S.: Mineral transformation and biomass accumulation associated with uranium bioremediation at rifle, Colorado. Environ Sci Technol. 43, 5429–5435 (2009). https://doi.org/10.1021/es900016v

    Article  Google Scholar 

  36. 36.

    Yabusaki, S.B., Fang, Y., Williams, K.H., Murray, C.J., Ward, A.L., Dayvault, R.D., Waichler, S.R., Newcomer, D.R., Spane, F.A., Long, P.E.: Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. J. Contam. Hydrol. 126(3–4), 271–290 (2011). https://doi.org/10.1016/j.jconhyd.2011.09.002

    Article  Google Scholar 

  37. 37.

    Bao, C., Wu, H., Li, L., Long, P.E., Newcomer, D., Williams, K.H.: Uranium bioreduction rates across scales: biogeochemical “hot moments” and “hot spots” during a biostimulation experiment at rifle, Colorado. Environ Sci Technol. 48(17), 10116–10127 (2014). https://doi.org/10.1021/es501060d

    Article  Google Scholar 

  38. 38.

    Arora, B., Davis, J.A., Spycher, N.F., Dong, W., Wainwright, H.M.: Comparison of electrostatic and non-electrostatic models for U (VI) sorption on aquifer sediments. Groundwater. 56(1), 73–86 (2018)

    Article  Google Scholar 

  39. 39.

    Druhan, J.L., Bill, M., Lim, H., Wu, C., Conrad, M.E., Williams, K.H., DePaolo, D.J., Brodie, E.L.: A large column analog experiment of stable isotope variations during reactive transport: II. Carbon mass balance, microbial community structure and predation. Geochim. Cosmochim. Acta. 124(366–393), (2014). https://doi.org/10.1016/j.gca.2013.08.036

  40. 40.

    Jin, Q., Bethke, C.M.: Cellular energy conservation and the rate of microbial sulfate reduction. Geology. 37(11), 1027–1030 (2009). https://doi.org/10.1130/G30185A.1

    Article  Google Scholar 

  41. 41.

    Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

    Article  Google Scholar 

  42. 42.

    Arora, B., Şengör, S.S., Spycher, N.F., Steefel, C.I.: A reactive transport benchmark on heavy metal cycling in lake sediments. Comput. Geosci. 19(3), 613–633 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Watershed Function Science Focus Area at Lawrence Berkeley National Laboratory funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under Contract No. DE-AC02-05CH11231. This work was also supported in part by the Energy Biosciences Institute. The authors would like to thank the reviewers for their constructive comments.This material is based upon work supported as part of the Energy Biosciences Institute and the Watershed Function Science Focus Area (SFA). The Watershed Function SFA at Lawrence Berkeley National Laboratory is funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under Contract No. DE-AC02-05CH11231.

Funding

This material is based upon work supported as part of the Energy Biosciences Institute and the Watershed Function Science Focus Area (SFA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yiwei Cheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 396 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Arora, B., Şengör, S.S. et al. Microbially mediated kinetic sulfur isotope fractionation: reactive transport modeling benchmark. Comput Geosci 25, 1379–1391 (2021). https://doi.org/10.1007/s10596-020-09988-9

Download citation

Keywords

  • Reactive transport modeling
  • Benchmark
  • Microbial sulfate reduction
  • S isotopes
  • Kinetic isotope fractionation