Skip to main content

Iterative geostatistical seismic inversion incorporating local anisotropies

Abstract

Geostatistical seismic inversion methods use stochastic sequential simulation as the model generation and perturbation technique. These stochastic simulation methods use a global variogram model to express the expected spatial continuity pattern of the subsurface elastic properties of interest. The conditioning to a single variogram model is not suitable for complex and non-stationary geological environments, resulting in poor inverted models unable to reproduce non-stationary features such as channels, folds, and faults. The proposed method uses a stochastic sequential simulation and co-simulation method able to cope with spatially varying information using local and independent variogram models. The information about the dip, azimuth, and ranges of the local variogram model is inferred directly from the observed data. First, local dip and azimuth structural volumes are computed from seismic attribute analysis. Then, local variogram models are fitted along the directions estimated from the previous step. This information is used as steering data during the inversion, acting as proxy of the true subsurface geological complexities. Application examples in synthetic and real datasets with complex geometries show the impact of using local anisotropy models in both the reproduction of the original seismic data and the reliability of the inverted models. The resulting inverted models show enhanced consistency, where small-to-large scale discontinuities and complex geometries are better reproduced, allowing reducing the spatial uncertainty associated with the subsurface properties. This work represents a step forward in integrating geological consistency into geostatistical seismic inversion, surpassing the limitation of using a single variogram model to reproduce complex geological patterns.

This is a preview of subscription content, access via your institution.

References

  1. Alvarez, P., Bolívar, F., Di Luca, M., Salinas, T.: Multiattribute rotation scheme: a tool for reservoir property prediction from seismic inversion attributes. Interpretation. 3(4), SAE9–SAE18 (2015)

    Article  Google Scholar 

  2. Azevedo, L., Nunes, R., Correia, P., Soares, A., Guerreiro, L., Neto, G.S.: Integration of well data into geostatistical seismic amplitude variation with angle inversion for facies estimation. Geophysics. 80(6), M113–M128 (2015)

    Article  Google Scholar 

  3. Azevedo, L., Soares, A.: Geostatistical Methods for Reservoir Geophysics. Advances in Oil and Gas Exploration & Production. Springer International Publishing (2017)

  4. Azevedo, L., Nunes, R., Soares, A., Neto, G.S., Martins, T.S.: Geostatistical seismic amplitude-versus-angle inversion. Geophys. Prospect. 66(S1), 116–131 (2018)

    Article  Google Scholar 

  5. Azevedo, L., Grana, D., Amaro, C.: Geostatistical rock physics AVA inversion. Geophys. J. Int. 216(3), 1728–1739 (2019). https://doi.org/10.1093/gji/ggy511

    Article  Google Scholar 

  6. Bachrach, R.: Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics. 71(5), O53–O63 (2006). https://doi.org/10.1190/1.2235991

    Article  Google Scholar 

  7. Biver, P., Zaytsev, V., Allard, D., Wackernagel, H.: Geostatistics on unstructured grids, theoretical background, and applications. In: Geostatistics Valencia 2016 (2017). https://doi.org/10.1007/978-3-319-46819-8_30

    Chapter  Google Scholar 

  8. Bornard, R., Allo, F., Coléou, T., Freudenreich, Y., Caldwell, D. H., Hamman, J. G.: Petrophysical seismic inversion to determine more accurate and precise reservoir properties: SPE Europec/EAGE Annual Conference, SPE 94144 (2005)

  9. Boisvert, J.B., Manchuk, J.G., Deutsch, C.V.: Kriging in the presence of locally varying anisotropy using non-Euclidean distances. Math. Geosci. 41, 585–601 (2009)

    Article  Google Scholar 

  10. Boisvert, J.B., Deutsch, C.V.: Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Comput. Geosci. 37(4), 495–510 (2011)

    Article  Google Scholar 

  11. Bortoli, L.J., Alabert, F., Haas, A., Journel, A.G.: Constraining stochastic images to seismic data. Geostatistics Tróia. 1, 325–337 (1992). https://doi.org/10.1007/978-94-011-1739-5_27

    Article  Google Scholar 

  12. Bosch, M.: Lithologic tomography: from plural geophysical data to lithology estimation. J. Geophys. Res. 104, 749–766 (1999)

    Article  Google Scholar 

  13. Bosch, M., Mukerji, T., Gonzalez, E.: Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics. 75, 75A165–75A176 (2010)

    Article  Google Scholar 

  14. Buland, A., Omre, H.: Bayesian linearized AVO inversion. Geophysics. 68, 185–198 (2003). https://doi.org/10.1190/1.1543206

    Article  Google Scholar 

  15. Caeiro, M., Demyanov, V., Soares, A.: Optimized history matching with direct sequential image transforming for non-stationary reservoirs. Math. Geosci. 47, 975–994 (2015). https://doi.org/10.1007/s11004-015-9591-0

    Article  Google Scholar 

  16. Chen, Q., Sidney, S.: Seismic attribute technology for reservoir forecasting and monitoring. Lead. Edge. 16, 445–456 (1997)

    Article  Google Scholar 

  17. Chopra, S., Marfurt, K.J.: Seismic attributes – a historical perspective. Geophysics. 70(5), 3SO–28SO (2005)

    Article  Google Scholar 

  18. Coléou, T., Allo, F., Bornard, R., Hamman, J., Caldwell, D.: Petrophysical seismic inversion, SEG, Expanded Abstracts, 1355–1358 (2005)

  19. Deutsch, C., Journel. A.G.: GSLIB: Geostatistical Software Library and Users’ Guide. Oxford University Press. Volume 136, Issue 1, pp. 83–108 (1998)

  20. Doyen, P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. 93(B7), 7729–7740 (1988)

    Article  Google Scholar 

  21. Doyen, P. M., Guidish, T. M.: Seismic discrimination of lithology: a Monte Carlo approach, in R. E. Sheriff, ed., Reservoir Geophysics: SEG, 243–250 (1992)

  22. Doyen, P. M., Den Boer, L. D.: Bayesian sequential Gaussian simulation of lithology with non-linear data: U.S. Patent 5,539,704 (1996)

  23. Doyen, P.: Seismic Reservoir Characterization: an Earth Modelling Perspective. Constraints. EAGE (2007)

  24. González, E.F., Mukerji, T., Mavko, G.: Seismic inversion combining rock physics and multiple-point geostatistics. Geophysics. 73(1), R11–R21 (2008)

    Article  Google Scholar 

  25. Grana, D., Della Rossa, E.: Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics. 75(3), (2010). https://doi.org/10.1190/1.3386676

  26. Grana, D., Fjeldstad, T., Omre, H.: Bayesian Gaussian mixture linear inversion for geophysical inverse problems. Math. Geosci. 49(4), 493–515 (2017)

    Article  Google Scholar 

  27. Gunning, J., Glinsky, M.E.: Detection of reservoir quality using Bayesian seismic inversion. Geophysics. 72(3), R37–R49 (2007)

    Article  Google Scholar 

  28. Haas, A., Dubrule, O.: Geostatistical inversion – a sequential method of stochastic reservoir modeling constrained by seismic data. First Break. 12, 561–569 (1994)

    Article  Google Scholar 

  29. Horta, A., Caeiro, M., Nunes, R., Soares, A.: Simulation of continuous variables at meander structures: application to contaminated sediments of a lagoon. In: Atkinson, P., Lloyd, C. (eds.) GeoENV VII – Geostatistics for Environmental Applications, pp. 161–172. Springer, London (2010)

    Chapter  Google Scholar 

  30. Iske, A., Randen, T.: Mathematical methods and modelling in hydrocarbon exploration and production. Mathematics in Industry. (2005). https://doi.org/10.1007/b137702

  31. Jullum, M., Kolbjørnsen, O.: A Gaussian based framework for Bayesian inversion of geophysical data to rock properties. Geophysics. 81(3), R75–R87 (2016)

    Article  Google Scholar 

  32. Kemper, M., Gunning, J.: Joint impedance and facies inversion: seismic inversion redefined. First Break. 32, 89–95 (2014)

    Google Scholar 

  33. Lillah, M., Boisvert, J.B.: Inference of locally varying anisotropy fields from diverse data sources. Comput. Geosci. 82, 170–182 (2015)

    Article  Google Scholar 

  34. Marfurt, K.J.: Robust estimates of 3D reflector dip and azimuth. Geophysics. 71(4), P29–P40 (2006). https://doi.org/10.1190/1.2213049

    Article  Google Scholar 

  35. Martin, R., Machuca-Mory, D., Leuangthong, O., Boisvert, J.B.: Non-stationary geostatistical modeling: a case study comparing LVA estimation frameworks. Nat. Resour. Res. 28, 291–307 (2018). https://doi.org/10.1007/s11053-018-9384-5

    Article  Google Scholar 

  36. Mukerji, T., Avseth, P., Mavko, G., Takahashi, I., González, E.F.: Statistical rock physics: combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. Lead. Edge. 20(3), 313–319 (2001)

    Article  Google Scholar 

  37. Pereira, P., Nunes, R., Azevedo, L., Soares, A.: The impact of a priori elastic models into iterative geostatistical seismic inversion. J. Appl. Geophys. 170, 103850 (2019). https://doi.org/10.1016/j.jappgeo.2019.103850

    Article  Google Scholar 

  38. Plavnik, A., Sidorov, A.N.: Mapping the properties of geological objects with allowance for anisotropy based on the simulation of the deformation transformation. Mathematical Models and Computer Simulations. 10(5), 629–638 (2018). https://doi.org/10.1134/S2070048218050095

    Article  Google Scholar 

  39. Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J. O., Sæter, T., Schlaf, J., Sønneland, L.: Three-dimensional texture attributes for seismic data analysis, S.E.G. Expanded Abstracts, 19 (2000)

  40. Rimstad, K., Omre, H.: Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics. 75(4), R93–R108 (2010)

    Article  Google Scholar 

  41. Rimstad, K., Avseth, P., Omre, H.: Hierarchical Bayesian lithology/fluid prediction: a North Sea case study. Geophysics. 77, B69–B85 (2012)

    Article  Google Scholar 

  42. Sams, M. S., Atkins, D., Siad, N., Parwito, E., van Riel, P.: Stochastic inversion for high resolution reservoir characterization in the central Sumatra basin: Society of Petroleum Engineers, 57260 (1999)

  43. Soares, A.: Direct sequential simulation and cosimulation. Math. Geol. 33, 911–926 (2001). https://doi.org/10.1023/A:1012246006212

    Article  Google Scholar 

  44. Soares, A., Diet, J. D., Guerreiro, L.: Stochastic inversion with a global perturbation method. Petroleum Geostatistics, EAGE, Cascais, Portugal (September 2007): 10–14 (2007)

  45. Spikes, K., Mukerji, T., Dvorkin, J., Mavko, G.: Probabilistic seismic inversion based on rock-physics models. Geophysics. 72(5), R87–R97 (2007). https://doi.org/10.1190/1.2760162

    Article  Google Scholar 

  46. Stroet, C., Snepvangers, J.: Mapping curvilinear structures with local anisotropy kriging. Math. Geol. 37, 635–649 (2005)

    Article  Google Scholar 

  47. Tarantola, A.: Inverse problem theory. SIAM (2005)

  48. Turco, F., Azevedo, L., Herold, D.: Geostatistical interpolation of non-stationary seismic data. Comput. Geosci. 23, 665–682 (2019). https://doi.org/10.1007/s10596-019-9812-6

    Article  Google Scholar 

  49. Vargas-Guzmán, J.A., Vargas-Murillo, B.: Functional decomposition kriging for embedding stochastic anisotropy. In: Geostatistics Valencia 2016 (2017). https://doi.org/10.1007/978-3-319-46819-8_2

    Chapter  Google Scholar 

  50. Xu, W.: Conditional curvilinear stochastic simulation using pixel-based algorithms. Math. Geol. 28(7), 937–949 (1996)

    Article  Google Scholar 

  51. Yao, T., Calvert, C., Jones, T., Foreman, L., Bishop, G.: Conditioning geological models to local continuity azimuth in spectral simulation. Math. Geol. 39, 349–354 (2007)

    Article  Google Scholar 

  52. Zaytsev, V., Biver, P., Wackernagel, H., Allard, D.: Change-of-support models on irregular grids for geostatistical simulation. Math. Geol. l48(4), 353–369 (2016)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Partex Oil & Gas for making this dataset available and for the permission to publish it. We also thank Schlumberger and CGG for the donation of the academic licenses of Petrel® and Geoview, respectively. The authors also acknowledge the two anonymous reviewers for their comments during the revision of this paper.

Funding

The authors gratefully acknowledge the support of the CERENA (strategic project FCT UID/ECI/04028/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pereira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, P., Calçôa, I., Azevedo, L. et al. Iterative geostatistical seismic inversion incorporating local anisotropies. Comput Geosci 24, 1589–1604 (2020). https://doi.org/10.1007/s10596-020-09966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09966-1

Keywords

  • Local varying anisotropy
  • Geostatistical seismic inversion
  • Structural seismic attributes
  • Local variogram models