Skip to main content
Log in

Data-space inversion with ensemble smoother

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Reservoir engineers use large-scale numerical models to predict the production performance in oil and gas fields. However, these models are constructed based on scarce and often inaccurate data, making their predictions highly uncertain. On the other hand, measurements of pressure and flow rates are constantly collected during the operation of the field. The assimilation of these data into the reservoir models (history matching) helps to mitigate uncertainty and improve their predictive capacity. History matching is a nonlinear inverse problem, which is typically handled using optimization and Monte Carlo methods. In practice, however, generating a set of properly history-matched models that preserve the geological realism is very challenging, especially in cases with intricate prior description, such as models with fractures and complex facies distributions. Recently, a new data-space inversion (DSI) approach was introduced in the literature as an alternative to the model-space inversion used in history matching. The essential idea is to update directly the predictions from a prior ensemble of models to account for the observed production history without updating the corresponding models. The present paper introduces a DSI implementation based on the use of an iterative ensemble smoother and demonstrates with examples that the new implementation is computationally faster and more robust than the earlier method based on principal component analysis and gradient-driven optimization. The new DSI is also applied to estimate the production forecast in a real field with long production history and a large number of wells. For this field problem, the new DSI obtained forecasts comparable with a more traditional ensemble-based history matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadpour, A., Adejare, M., Chugunova, T., Mathieu, H., Haller, N.: Integrated geo-modeling and ensemble history matching of complex fractured carbonate and deep offshore turbidite fields, generation of several geologically coherent solutions using ensemble methods. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, number SPE-193028-MS. https://doi.org/10.2118/193028-MS (2018)

  2. Audet, C., Jr., J. E. D: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006). https://doi.org/10.1137/040603371

  3. Avansi, G. D., Schiozer, D. J.: UNISIM-I: synthetic model for reservoir development and management applications. Int. J. Model. Simul. Petrol. Indust. 9(1):21–30. http://www.ijmspi.org/ojs/index.php/ijmspi/article/view/152 (2015)

  4. Chen, Y., Oliver, D. S.: Cross-covariance and localization for enKF in multiphase flow data assimilation. Comput. Geosci. 14(4), 579–601 (2010). https://doi.org/10.1007/s10596-009-9174-6

    Article  Google Scholar 

  5. Chen, Y., Oliver, D. S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2012). https://doi.org/10.1007/s11004-011-9376-z

    Article  Google Scholar 

  6. Chen, Y., Oliver, D.S. : Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013). https://doi.org/10.1007/s10596-013-9351-5

    Article  Google Scholar 

  7. Chen, Y., Oliver, D. S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(2). https://doi.org/10.2118/164902-PA (2014)

  8. Emerick, A. A.: Estimation of pressure and saturation fields from time-lapse impedance data using the ensemble smoother. J. Geophys. Eng. 11(3):035007, 2014. https://doi.org/10.1088/1742-2132/11/3/035007

  9. Emerick, A. A.: Analysis of the performance of ensemble-based assimilation of production and seismic data. J. Pet. Sci. Eng. 139, 219–239 (2016). https://doi.org/10.1016/j.petrol.2016.01.029

    Article  Google Scholar 

  10. Emerick, A. A.: Analysis of geometric selection of the data-error covariance inflation for ES-MDA. arXiv:1812.00924v1 [math.NA]. arXiv:1812.00924 (2018)

  11. Emerick, A. A., Reynolds, A. C.: History matching a field case using the ensemble Kalman filter with covariance localization. SPE Reserv. Eval. Eng. 14(4), 423–432 (2011a). https://doi.org/10.2118/141216-PA

  12. Emerick, A. A., Reynolds, A. C.: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci. 15(2), 251–269 (2011b). https://doi.org/10.1007/s10596-010-9198-y

  13. Emerick, A. A., Reynolds, A. C.: History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations. Comput. Geosci. 16(3), 639–659 (2012). https://doi.org/10.1007/s10596-012-9275-5

    Article  Google Scholar 

  14. Emerick, A. A., Reynolds, A. C.: Investigation on the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325–350 (2013a). https://doi.org/10.1007/s10596-012-9333-z

  15. Emerick, A. A., Reynolds, A. C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013b). https://doi.org/10.1016/j.cageo.2012.03.011

  16. Emerick, A. A., Reynolds, A. C.: History matching of production and seismic data for a real field case using the ensemble smoother with multiple data assimilation. In: Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, Texas, number SPE-163675-MS. https://doi.org/10.2118/163675-MS (2013c)

  17. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143–10162 (1994). https://doi.org/10.1029/94JC00572

    Article  Google Scholar 

  18. Evensen, G.: Sampling strategies and square root analysis schemes for the enKF. Ocean Dyn. 54(6), 539–560 (2004). https://doi.org/10.1007/s10236-004-0099-2

    Article  Google Scholar 

  19. Evensen, G.: Data Assimilation the Ensemble Kalman Filter. Springer, Berlin (2007)

    Google Scholar 

  20. Evensen, G.: Analysis of iterative ensemble smoothers for solving inverse problems Computational Geosciences. https://doi.org/10.1007/s10596-018-9731-y (2018)

  21. Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 98(2), 227–255 (2007). https://doi.org/10.1016/j.jmva.2006.08.003

    Article  Google Scholar 

  22. Gaspari, G., Cohn, S. E.: Construction of correlation functions in two and three dimensions. Q. J. Roy. Meteorol. Soc. 125(554), 723–757 (1999). https://doi.org/10.1002/qj.49712555417

    Article  Google Scholar 

  23. He, J., Sarma, P., Bhark, E., Tanaka, S., Chen, B., Wen, X.-H., Kamath, J.: Quantifying expected uncertainty reduction and value of information using ensemble-variance analysis. SPE J. 23(2). https://doi.org/10.2118/182609-PA (2018)

  24. Houtekamer, P. L., Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129(1):123–137. https://doi.org/10.1175/1520-0493(2001)129%3E0123:ASEKFF%BF2.0.CO;2 (2001)

  25. Jeong, H., Sun, A. Y., Lee, J., Min, B.: A learning-based data-driven forecast approach for predicting future reservoir performance. Adv. Water Resour. 118, 95–109 (2018). https://doi.org/10.1016/j.advwatres.2018.05.015

    Article  Google Scholar 

  26. Jiang, S.: Data-Space Inversion with Variable Well Controls in the Prediction Period. Master’s thesis, Stanford University (2018)

  27. Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E.: Multimodel ensemble forecasts for weather and seasonal climate. J. Clim. 13(23):4196–4216. https://doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2 (2000)

  28. Lacerda, J. M., Emerick, A. A., Pires, A. P.: Methods to mitigate loss of variance due to sampling errors in ensemble data assimilation with non-local model parameters. J. Pet. Sci. Eng. 172, 690–706 (2019). https://doi.org/10.1016/j.petrol.2018.08.056

    Article  Google Scholar 

  29. Le, D. H., Emerick, A. A., Reynolds, A. C.: An adaptive ensemble smoother with multiple data assimilation for assisted history matching. SPE J. 21(6), 2195–2207 (2016). https://doi.org/10.2118/173214-PA

  30. Lorentzen, R. J., Luo, X., Bhakta, T., Valestrand, R.: History Matching the Full Norne Field Model Using Seismic and Production Data. SPE Journal, Preprint. https://doi.org/10.2118/194205-PA (2019)

  31. Luo, X., Stordal, A. S., Lorentzen, R. J., Nævdal, G.: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: Theory and applications. SPE J. 20(5). https://doi.org/10.2118/176023-PA (2015)

  32. Luo, X., Bhakta, T., Nævdal, G.: Correlation-based adaptive localization with applications to ensemble-based 4D-seismic history matching. SPE J. 23(2), 396–427 (2018). https://doi.org/10.2118/185936-PA

    Article  Google Scholar 

  33. Ma, X., Hetz, G., Wang, X., Bi, L., Stern, D., Hoda, N.: A robust iterative ensemble smoother method for efficient history matching and uncertainty quantification. In: Proceedings of the SPE Reservoir Simulation Conference, Montgomery, Texas, USA, number SPE-182693-MS. https://doi.org/10.2118/182693-MS (2017)

  34. Mallet, V., Stoltz, G., Mauricette, B.: Ozone ensemble forecast with machine learning algorithms. J. Geophys. Res. Atmos. 114(D5). https://doi.org/10.1029/2008JD009978 (2009)

  35. Maschio, C., Avansi, G. D., Santos, A. A., Schiozer, D. J.: UNISIM-I-H: Case Study for History Matching. Dataset. www.unisim.cepetro.unicamp.br/benchmarks/br/unisim-i/unisim-i-h (2013)

  36. Maucec, M., Ravanelli, F. M. D. M., Lyngra, S., Zhang, S. J., Alramadhan, A. A., Abdelhamid, O. A., Al-Garni, S. A.: Ensemble-based assisted history matching with rigorous uncertainty quantification applied to a naturally fractured carbonate reservoir. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, UAE, number SPE-181325-MS. https://doi.org/10.2118/181325-MS (2016)

  37. Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, New York (2006)

    Google Scholar 

  38. Oliver, D. S., Alfonzo, M.: Calibration of imperfect models to biased observations. Comput. Geosci. 22, 145–161 (2018). https://doi.org/10.1007/s10596-017-9678-4

    Article  Google Scholar 

  39. Oliver, D. S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011). https://doi.org/10.1007/s10596-010-9194-2

    Article  Google Scholar 

  40. Oliver, D. S., Reynolds, A. C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  41. Pagowski, M., Grell, G. A., McKeen, S. A., Dévényi, W.J. M., Bouchet, V. S., Gong, W. F., Mchenry, J. N., Peckham, S., Mcqueen, J. T., Moffet, R., Tang, Y.: A simple method to improve ensemble-based ozone forecasts. Geophys. Res. Lett. 320(7). https://doi.org/10.1029/2004GL022305 (2005)

  42. Rafiee, J., Reynolds, A. C.: Theoretical and efficient practical procedures for the generation of inflation factors for ES-MDA. Inverse Probl. 33(11):115003. https://doi.org/10.1088/1361-6420/aa8cb2 (2017)

  43. Reynolds, A. C., Zafari, M., Li, G.: Iterative forms of the ensemble Kalman filter. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam. https://doi.org/10.3997/2214-4609.201402496(2006)

  44. Satija, A., Caers, J.: Direct forecasting of subsurface flow response from non-linear dynamic data by linear least-squares in canonical functional principal component space. Adv. Water Resour. 77, 69–81 (2015). https://doi.org/10.1016/j.advwatres.2015.01.002

    Article  Google Scholar 

  45. Satija, A., Caers, J.: Direct forecasting of reservoir performance using production data without history matching. Comput. Geosci. 21(2), 315–333 (2017). https://doi.org/10.1007/s10596-017-9614-7

    Article  Google Scholar 

  46. Scheidt, C., Renard, P., Caers, J.: Prediction-focused subsurface modeling Investigating the need for accuracy in flow-based inverse modeling. Math. Geosci. 47(2), 173–191 (2015). https://doi.org/10.1007/s11004-014-9521-6

    Article  Google Scholar 

  47. Skjervheim, J. -A., Evensen, G., Hove, J., Vabø, J.G.: An ensemble smoother for assisted history matching. In: Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, Texas, number SPE-141929-MS. https://doi.org/10.2118/141929-MS (2011)

  48. Souza, C. R.: Accord.NET Framework Broyden-Fletcher-Goldfarb-Shanno class. http://accord-framework.net/docs/html/T_Accord_Math_Optimization_BroydenFletcherGoldfarbShanno.htm (2017)

  49. Stordal, A. S.: Iterative Bayesian inversion with Gaussian mixtures: finite sample implementation and large sample asymptotics. Comput. Geosci. 19(1), 1–15 (2014). https://doi.org/10.1007/s10596-014-9444-9

    Article  Google Scholar 

  50. Stordal, A. S., Elsheikh, A. H.: Iterative ensemble smoothers in the annealed importance sampling framework. Adv. Water Resour. 86, 231–239 (2015). https://doi.org/10.1016/j.advwatres.2015.09.030

    Article  Google Scholar 

  51. Sun, W., Durlofsky, L. J.: A new data-space inversion procedure for efficient uncertainty quantification in subsurface flow problems. Math. Geosci. 49, 679–715 (2017). https://doi.org/10.1007/s11004-016-9672-8

    Article  Google Scholar 

  52. Sun, W., Hui, M. -H., Durlofsky, L. J.: Production forecasting and uncertainty quantification for naturally fractured reservoirs using a new data-space inversion procedure. Computational Geosciences, Online. https://doi.org/10.1007/s10596-017-9633-4 (2017a)

  53. Sun, W., Vink, J. C., Gao, G.: A practical method to mitigate spurious uncertainty reduction in history matching workflows with imperfect reservoir models. In: Proceedings of the SPE Reservoir Simulation Conference, Montgomery, Texas, number SPE-182599-MS. https://doi.org/10.2118/182599-MS (2017b)

  54. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

  55. van Leeuwen, P. J., Evensen, G.: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124:2898–2913. https://doi.org/10.1175/1520-0493(1996)124%3C2898:DAAIMI%3E2.0.CO;2 (1996)

  56. Zhang, Y., Oliver, D. S.: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci. 42, 327–345 (2010). https://doi.org/10.1007/s11004-010-9267-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Petrobras for supporting this research and for the permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. Emerick.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, M.M., Emerick, A.A. & Ortiz, C.E.P. Data-space inversion with ensemble smoother. Comput Geosci 24, 1179–1200 (2020). https://doi.org/10.1007/s10596-020-09933-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09933-w

Keywords

Navigation