Bennett, A.F.: Inverse Methods in Physical Oceanography. Cambridge University Press (1992)
Bocquet, M., Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother. Nonlinear. Processes. in. Geophysics., European Geosciences Union (EGU) 20(5), 803–818 (2013)
Article
Google Scholar
Bocquet, M., Sakov, P.: An iterative ensemble Kalman smoother. Q.. J.. R.. Meteorol.. Soc.. 140, 1521–1535 (2014)
Article
Google Scholar
Carrassi, A., Vannitsem, S.: Deterministic treatment of model error in geophysical data assimilation. In: Ancona, F, Cannarsa, P, Jones, C, Portaluri, A (eds.) Mathematical Paradigms of Climate Science, Springer INdAM Series, vol. 15, pp 175–213. Springer, Cham (2016)
Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44, 1–26 (2012)
Article
Google Scholar
Chen, Y., Oliver, D.S.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Computat. Geosci. 17, 689–703 (2013)
Article
Google Scholar
Eknes, M., Evensen, G.: Parameter estimation solving a weak constraint variational formulation for an Ekman model. J. Geophys. Res. 102(C6), 12.479–12.491 (1997)
Article
Google Scholar
Emerick, A.A., Reynolds, A.C.: History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations. Computat. Geosci. 16(3), 639–659 (2012)
Article
Google Scholar
Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)
Article
Google Scholar
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10.143–10.162 (1994)
Article
Google Scholar
Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean. Dyn. 53, 343–367 (2003)
Article
Google Scholar
Evensen, G: Data Assimilation: The Ensemble Kalman Filter, 2nd edn. Springer (2009)
Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control. Syst. Mag. 29(3), 83–104 (2009b)
Evensen, G.: Analysis of iterative ensemble smoothers for solving inverse problems. Computat. Geosci. 22(3), 885–908 (2018). https://doi.org/10.1007/s10596-018-9731-y
Article
Google Scholar
Evensen, G., Eikrem, K.S.: Strategies for conditioning reservoir models on rate data using ensemble smoothers. Computat. Geosci. 22(5), 1251–1270 (2018). https://doi.org/10.1007/s10596-018-9750-8
Article
Google Scholar
Evensen, G., van Leeuwen, P.J.: Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasi-geostrophic model. Mon. Weather. Rev. 124, 85–96 (1996)
Article
Google Scholar
Harlim, J.: Model error in data assimilation. In: Franzke, C (ed.) Nonlinear and Stochastic Climate Dynamics. also available as arXiv:abs/1311.3579. Cambridge University Press, Cambridge (2017)
Kitanidis, P.K.: Quasi-linear geostatistical therory for inversing. Water. Resour. Res. 31(10), 2411–2419 (1995)
Article
Google Scholar
Neal, R.M.: Sampling from multimodal distributions using tempered transitions. Stat. Comput. 6(4), 353–366 (1996)
Article
Google Scholar
Oliver, D.S., He, N., Reynolds, A.C.: Conditioning permeability fields to pressure data. In: ECMOR – 5th European Conference on the Mathematics of Oil Recovery (1996)
Reynolds, A.C., Zafari, M., Li, G: Iterative forms of the Ensemble Klman Filter. In: ECMOR – 10th European Conference on the Mathematics of Oil Recovery (2006)
Sakov, P., Oliver, D.S., Bertino, L.: An iterative EnKF for strongly nonlinear systems. MonWeather. Rev. 140, 1988–2004 (2012)
Article
Google Scholar
Sakov, P., Haussaire, J.M., Bocquet, M.: An iterative ensemble Kalman filter in the presence of additive model error. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3213 (2018)
Stordal, A., Elsheikh, A.H.: Iterative ensemble smoothers in the annealed importance sampling framework. Adv. Water. Resour. 86, 231–239 (2015)
Article
Google Scholar