Skip to main content

Geostatistical interpolation of non-stationary seismic data

Abstract

The problem of sparsely collected seismic data is one of the main issues in reflection seismology, because most advanced data processing techniques require a dense and regular seismic data grid. We present a geostatistical seismic data interpolation technique based on sequential stochastic simulations with local structural anisotropies. This technique, contrary to conventional existing data-driven seismic interpolation approaches based on sparsity, prediction filters, or rank-reduction, predicts the value of seismic amplitudes at non-sampled locations by exploiting the statistics of the recorded amplitudes, which are used as experimental data for the geostatistical interpolation in the original data domain. Local mean and variance are computed on-the-fly to define intervals of the global conditional distribution function, from where amplitude values are stochastically simulated. The parameters to define subsets of experimental data from which mean and variance are calculated are given by local variogram models, which in turn are obtained from a local dip and azimuth estimation in the t-x-y domain. The geostatistical seismic data interpolation technique is applied to synthetic and real 2D and 3D datasets in both post- and pre-stack domains. Besides being computationally cheaper than other methods, because the interpolation is carried out directly in the original data domain, the proposed technique provides a local quantitative analysis of the reliability of the interpolated seismic samples, which can be exploited in following processing steps.

This is a preview of subscription content, access via your institution.

References

  1. Aravkin, A.Y., Kumar, R., Mansour, B., Recht, B., Herrmann, F.J.: Fast methods for denoising matrix completion formulations, with application to robust seismic data interpolation. SIAM J. Sci. Comput. 36, S237–S266 (2014)

    Article  Google Scholar 

  2. Azevedo, L., Soares, A.: Geostatistical methods for reservoir geophysics. Advances in oil and gas exploration & production. Springer International Publishing (2017)

  3. Bahorich, M., Farmer, S.: 3-D seismic coherency for faults and stratigraphic features: The coherence cube. The Leading Edge 14(10), 1053–1058 (1995). https://doi.org/10.1190/1.1437077

    Article  Google Scholar 

  4. Biondi, B., Palacharla, G.: 3-D prestack migration of common-azimuth data. Geophysics 61, 1822–1832 (1996)

    Article  Google Scholar 

  5. Caeiro, M.H., Demyanov, V., Soares, A.: Optimized history matching with direct sequential image transforming for non-stationary reservoirs. Math. Geosci. https://doi.org/10.1007/s11004-015-9591-0 (2015)

  6. Claerbout, J.F.: Earth Soundings Analysis: Processing Versus Inversion. Blackwell Scientific Publications, Cambridge (1992)

  7. Dalley, R.M., Gevers, E.E.A., Stampli, G.M., Davies, D.J., Gastaldi, C.N., Ruijtenberg, P.R., Vermeer, G.J.D.: Dip and azimuth displays for 3D seismic interpretation. First Break 7, 86–95 (1989)

    Google Scholar 

  8. Darche, G: Spatial interpolation using a fast parabolic transform. In: 60th Annual International Meeting, SEG, Expanded Abstracts, pp. 1647–1750 (1990)

  9. Deutsch, C., Journel, A.G.: GSLIB. Geostatistical Software Library and Users’ Guide. Oxford University Press, Oxford (1998)

    Google Scholar 

  10. Doyen, P.M.: Seismic Reservoir Characterization. EAGE, Madrid (2007)

    Google Scholar 

  11. Dubrule, O.: Geostatistics for Seismic Data Integration in Earth Models. SEG/EAGE Distinguished Instructor Short Course Number 6, Tulsa (2003)

    Book  Google Scholar 

  12. Fomel, S.: Applications of plane-wave destruction filters. Geophysics 67, 1946–1960 (2002)

    Article  Google Scholar 

  13. Fomel, S.: Seismic reflection data interpolation with differential offset and shot continuation. Geophysics 68, 733–744 (2003). https://doi.org/10.1190/1.1567243

    Article  Google Scholar 

  14. Gardner, G.H.F., Canning, A.: Effects of irregular sampling on 3-D prestack migration. In: 64th Annual International Meeting, SEG, Expanded Abstracts, pp 1553–1556 (1994)

  15. Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, New York (1997)

    Google Scholar 

  16. Guo, J., Zhou, X., Yang, H.J.: Efficient f-k domain seismic trace interpolation for spatially aliased data. In: 66th Annual International Meeting, SEG, Expanded Abstracts, pp 1457–1460 (1996)

  17. Gülünay, N.: Seismic trace interpolation in the Fourier transform domain. Geophysics 68, 355–369 (2003). https://doi.org/10.1190/1.1543221

    Article  Google Scholar 

  18. Gülünay, N., Chambers, R.E.: Unaliased f-k domain trace interpolation (UFKI). In: 66th Annual International Meeting, SEG, Expanded Abstracts, pp 1461–1464 (1996)

  19. Hennenfent, G., Herrmann, F.J.: Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics 73, V19–V28 (2008)

    Article  Google Scholar 

  20. Herrmann, F.J., Hennenfent, G.: Non-parametric seismic data recovery with curvelet frames. Geophys. J. Int. 173, 233–248 (2008)

    Article  Google Scholar 

  21. Horta, A, Caeiro, M., Nunes, R., Soares, A.A.: Simulation of continuous variables at meander structures: application to contaminated sediments of a lagoon. In: Atkinson P, Lloyd C (eds.) geoENV VII—Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, pp 161–172. Springer, The Netherlands (2009)

  22. Jia, Y., Ma, J.: What can machine learning do for seismic data processing: an interpolation application? Geophysics 82(3), V163–V177 (2017). https://doi.org/10.1190/GEO2016-0300.1

    Article  Google Scholar 

  23. Kreimer, N., Stanton, A., Sacchi, M.D.: Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction. Geophysics 78(6), 273–V284 (2013). https://doi.org/10.1190/geo2013-0022.1

    Article  Google Scholar 

  24. Kumar, R, Mansour, H., Herrmann, F.J., Aravkin, A.Y.: Reconstruction of seismic wavefields via low-rank matrix factorization in the hierarchical-separable matrix representation. In: SEG Technical Program Expanded Abstracts, pp 3628–3633 (2013)

  25. Kumar, R., Da Silva, C., Akalin, O., Aravkin, A.Y., Mansour, H., Recht, B., Herrmann, F. J.: Efficient matrix completion for seismic data reconstruction. Geophysics 80(5), V97–V113 (2015)

    Article  Google Scholar 

  26. Liang, J., Ma, J., Zhang, X.: Seismic data restoration via data-driven tight frame. Geophysics 79(3), V65–V74 (2014)

    Article  Google Scholar 

  27. Liu, B., Sacchi, M.D.: Minimum weighted norm interpolation of seismic records. Geophysics 69, 1560–1568 (2004). https://doi.org/10.1190/1.1836829

    Article  Google Scholar 

  28. Liu, Y., Fomel, S.: Seismic data interpolation beyond aliasing using regularized nonstationary autoregression. Geophysics 76, V69–V77 (2011)

    Article  Google Scholar 

  29. Luis J.J., Almeida J.: Stochastic characterization of fluvial sand channels. In: E. Baafi, et al. (eds.) Geostatistics Wollogong 96, pp 465–477, Kluwer Academic Publishers (1997)

  30. Ma, J.: Three-dimensional irregular seismic data reconstruction via low-rank matrix completion. Geophysics 78(5), V181–V192 (2013)

    Article  Google Scholar 

  31. Marfurt, K.J.: Robust estimates of 3D reflector dip and azimuth. Geophysics, 71(4). https://doi.org/10.1190/1.2213049 (2006)

  32. Naghizadeh, M., Sacchi, M.D.: f-x adaptive seismic trace interpolation. Geophysics 74(1), V9–V16 (2009). https://doi.org/10.1190/1.3008547

    Article  Google Scholar 

  33. Naghizadeh, M., Sacchi, M.D.: Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics 75, WB189–WB202 (2010)

    Article  Google Scholar 

  34. Naghizadeh, M, Sacchi, M.D.: Hierarchical scale curvelet interpolation of aliased seismic data. In: 80th Annual International Meeting, SEG, Expanded Abstracts, pp 3656–3661 (2010)

  35. Naghizadeh, M., Innanen, K.A.: Seismic data interpolation using a fast generalized Fourier transform. Geophysics 76(1), V1–V10 (2011)

    Article  Google Scholar 

  36. Nguyen, T., Winnett, R.: Seismic interpolation by optimally matched Fourier components. In: SEG Technical Program Expanded Abstracts, pp. 3085–3089 (2011)

  37. Oporeza, V., Sacchi, M.D.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76, V25–V32 (2011)

    Article  Google Scholar 

  38. Porsani, M.J.: Seismic trace interpolation using half-step prediction filters. Geophysics 64, 1461–1467 (1999)

    Article  Google Scholar 

  39. Ronen, J.: Wave-equation trace interpolation. Geophysics 52, 973–984 (1987)

    Article  Google Scholar 

  40. Sacchi, M.D., Ulrych, T.J.: Estimation of the discrete Fourier Transform, a linear inversion approach. Geophysics 61, 1128–1136 (1996)

    Article  Google Scholar 

  41. Sacchi, M.D., Ulrych, T.J., Walker, C.J.: Interpolation and extrapolation using a high-resolution discrete Fourier transform. IEEE Trans. Signal Process. 46, 31–38 (1998)

    Article  Google Scholar 

  42. Soares, A.: Geostatistical estimation of orebody geometry: morphological kriging. Math. Geol. 22(7), 787–802 (1990)

    Article  Google Scholar 

  43. Soares, A.: Direct sequential simulation and co-simulation. Math. Geol. 33(8), 911–926 (2001)

    Article  Google Scholar 

  44. Spitz, S.: Seismic trace interpolation in the F-X domain. Geophysics 56, 785–794 (1991). https://doi.org/10.1190/1.1443096

    Article  Google Scholar 

  45. Stolt, R.H.: Seismic data mapping and reconstruction. Geophysics 67, 890–908 (2002). https://doi.org/10.1190/1.1484532

    Article  Google Scholar 

  46. Stroet, C., Judith, J.: Mapping curvilinear structures with local anisotropy kriging. Math. Geol. 37(6) (2005)

  47. Trad, D., Ulrych, T.J., Sacchi, M.D.: Accurate interpolation with high-resolution time-variant Radon transforms. Geophysics 67(2), 644–656 (2002)

    Article  Google Scholar 

  48. Trad, D.: Interpolation and multiple attenuation with migration operators. Geophysics 68, 2043–2054 (2003). https://doi.org/10.1190/1.1635058

    Article  Google Scholar 

  49. Trad, D.: Five-dimensional interpolation: recovering from acquisition constraints. Geophysics 74(6), V123–V132 (2009). https://doi.org/10.1190/1.3245216

    Article  Google Scholar 

  50. Trickett, S.R.: F-xy Eigenimage noise suppression. Geophysics 68, 751–759 (2003)

    Article  Google Scholar 

  51. Trickett, S., Burroughs, L., Milton, A., Walton, L., Dack, R.: Rank-reduction-based trace interpolation. In: SEG Technical Program Expanded Abstracts, pp 3829–3833 (2010)

  52. Turquais, P., Asgedom, E.G., Söllner, W.: Structured dictionary learning for interpolation of aliased seismic data. In: 87th Annual Meeting, SEG, pp 4257–4261 (2017)

  53. Van Dedem, E.J., Verschuur, D. J.: 3-D surface-related multiple elimination and interpolation. In: 68th Annual International Meeting, SEG, pp 1321–1324 (1998)

  54. Wang, Y.: Seismic trace interpolation in the f-x-y domain. Geophysics 67, 1232–1239 (2002)

    Article  Google Scholar 

  55. Wang, J., Ng, M, Perz, M.: Fast high resolution Radon transforms by greedy least-squares methods. In: SEG Expanded Abstracts, vol. 28, pp 3128–3132 (2009)

  56. Xu, W.: Conditional curvilinear stochastic simulation using pixel-based algorithms. Math. Geol. 28(7), 937–949 (1996)

    Article  Google Scholar 

  57. Yang, S., Ma, J., Osher, S.: Seismic data reconstruction via matrix completion. In: UCLA CAM, pp 12–14 (2012)

Download references

Acknowledgements

The authors gratefully acknowledge the support of the CERENA (strategic project FCT-UID/ECI/04028/2013) and Parallel Geoscience for data availability and the use of SPW 4.0. L. M. Pinheiro for proposing the challenge. A special acknowledgement goes to Gary F. Margrave, Mostafa Naghizadeh, and the CREWES consortium for making available an exhaustive Matlab software library used to test the f -x interpolation technique.

Funding

The authors thank the EU Youth Guarantee program, the Italian Ministry of Education and the Autonomous Region Friuli-Venezia Giulia for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Turco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turco, F., Azevedo, L. & Herold, D. Geostatistical interpolation of non-stationary seismic data. Comput Geosci 23, 665–682 (2019). https://doi.org/10.1007/s10596-019-9812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-9812-6

Keywords

  • Seismic interpolation
  • Stochastic simulation
  • Uncertainty