A global sensitivity analysis and reduced-order models for hydraulically fractured horizontal wells

Abstract

Several factors affect the performance and stimulation design of hydraulically fractured wells. Moreover, the dominant factors vary for different quantities of interest, and vary based on the spatial location and with the time of interest. Thus, it will be beneficial if there is a systematic procedure to identify the dominant factors affecting the quantities of interest. To this end, we present a systematic global sensitivity analysis using the Sobol method which can be utilized to rank the variables that affect two quantity of interests—pore pressure depletion and stress change—around a hydraulically fractured horizontal well based on their degree of importance. These variables include rock properties and stimulation design variables. A fully coupled poroelastic hydraulic fracture model is used to account for pore pressure and stress changes due to production. To ease the computational cost of a simulator, we also provide reduced-order models (ROMs), which can be used to replace the complex numerical model with a rather simple analytical model, for calculating the pore pressure and stresses at different locations around hydraulic fractures. The two main reasons for choosing the Sobol method are that it can capture the individual and interaction effects of input variables on the variance of outputs (which is not the case with local sensitivity analysis techniques). It also furnishes a systematic procedure with strong mathematical underpinning to generate ROMs for various quantities of interests for a given mathematical model and for a given set of input variables. The main findings of this research are as follows: (i) mobility, production pressure, and fracture half-length are the main contributors to the changes in the quantities of interest. The percentage of the contribution of each parameter depends on the location with respect to pre-existing hydraulic fractures and the quantity of interest. (ii) As time progresses, the effect of mobility decreases and the effect of production pressure increases. (iii) These two variables are also dominant for horizontal stresses at large distances from hydraulic fractures. (iv) At zones close to hydraulic fracture tips or inside the spacing area, other parameters such as fracture spacing and half-length are the dominant factors that affect the minimum horizontal stress. The results of this study will provide useful guidelines for the stimulation design of legacy wells and secondary operations such as refracturing and infill drilling.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aliabadi, M.H.: The boundary element method. Volume 2, Applications in solids and structures. Wiley, New York (2002)

  2. 2.

    Aliabadi, M.H., Rooke, D.: The boundary element method. Numerical Fracture Mechanics 50(2), 83–96 (1991)

    Google Scholar 

  3. 3.

    Archer, G., Saltelli, A., Sobol, I.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58(2), 99–120 (1997)

    Article  Google Scholar 

  4. 4.

    Arwade, S.R., Moradi, M., Louhghalam, A.: Variance decomposition and global sensitivity for structural systems. Eng. Struct. 32(1), 1–10 (2010)

    Article  Google Scholar 

  5. 5.

    Auder, B., De Crecy, A., Iooss, B., Marques, M.: Screening and metamodeling of computer experiments with functional outputs. application to thermal–hydraulic computations. Reliab. Eng. Syst. Saf. 107, 122–131 (2012)

    Article  Google Scholar 

  6. 6.

    Behnia, M., Goshtasbi, K., Marji, M.F., Golshani, A.: Numerical simulation of crack propagation in layered formations. Arab. J. Geosci. 7(7), 2729–2737 (2014)

    Article  Google Scholar 

  7. 7.

    Berchenko, I., Detournay, E.: Deviation of hydraulic fractures through poroelastic stress changes induced by fluid injection and pumping. Int. J. Rock Mech. Min. Sci. 34(6), 1009–1019 (1997)

    Article  Google Scholar 

  8. 8.

    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  9. 9.

    Bobet, A., Mutlu, O.: Stress and displacement discontinuity element method for undrained analysis. Eng. Fract. Mech. 72(9), 1411–1437 (2005)

    Article  Google Scholar 

  10. 10.

    Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248(3), 869–887 (2016)

    Article  Google Scholar 

  11. 11.

    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary element techniques: theory and applications in engineering. Springer Science & Business Media (2012)

  12. 12.

    Carvalho, J.L.: Poroelastic Effects and Influence of Material Interfaces on Hydraulic Fracture Behaviour. PhD thesis, University of Toronto (1991)

  13. 13.

    Chadwick, P.: Continuum mechanics: concise theory and problems. Courier Corporation (2012)

  14. 14.

    Chang, J., Nakshatrala, K.B., Reddy, J.N.: Modification to Darcy-Forchheimer model due to pressure-dependent viscosity: consequences and numerical solutions. Journal of Porous Media 20(3), 263–285 (2017)

    Article  Google Scholar 

  15. 15.

    Cheng, A.H.D.: Poroelasticity, vol. 27. Springer, Switzerland (2016)

  16. 16.

    Cheng, C., Bunger, A.: Reduced order model for simultaneous growth of multiple closely-spaced radial hydraulic fractures. J. Comput. Phys. 376, 228–248 (2019)

    Article  Google Scholar 

  17. 17.

    Chukwudozie, C., Bourdin, B., Yoshioka, K.: A variational phase-field model for hydraulic fracturing in porous media. Computer Methods in Applied Mechanics and Engineering (2019)

  18. 18.

    Chun, K.H.: Thermo-Poroelastic Fracture Propagation Modeling with Displacement Discontinuity Boundary Element Method. PhD thesis, Texas A&M University (2013)

  19. 19.

    Cleary, M.P.: Fundamental solutions for a fluid-saturated porous solid. Int. J. Solids Struct. 13(9), 785–806 (1977)

    Article  Google Scholar 

  20. 20.

    Crouch, S.: Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int. J. Numer. Methods Eng. 10(2), 301–343 (1976)

    Article  Google Scholar 

  21. 21.

    Cruse, T.A.: Boundary element analysis in computational fracture mechanics, vol 1. Springer Science & Business Media (2012)

  22. 22.

    Curran, J., Carvalho, J.L.: A displacement discontinuity model for fluid-saturated porous media. In: 6th ISRM Congress, International Society for Rock Mechanics (1987)

  23. 23.

    Dai, C., Li, H., Zhang, D.: Efficient and accurate global sensitivity analysis for reservoir simulations by use of probabilistic collocation method. SPE J. 19(04), 621–635 (2014)

    Article  Google Scholar 

  24. 24.

    Detournay, E., Cheng, A.H.: Poroelastic solution of a plane strain point displacement discontinuity. J. Appl. Mech. 54(4), 783–787 (1987)

    Article  Google Scholar 

  25. 25.

    Detournay, E., Cheng, A.D., Roegiers, J.C., Mclennan, J.D.: Poroelasticity considerations in in situ stress determination by hydraulic fracturing. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 26, 507–513. Elsevier (1989)

  26. 26.

    Florez, H., Gildin, E., et al.: Model-order reduction of coupled flow and geomechanics in ultra-low permeability ULP reservoirs. In: SPE Reservoir Simulation Conference, Society of Petroleum Engineers (2019)

  27. 27.

    Gordeliy, E., Detournay, E.: Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space. Int. J. Solids Struct. 48(19), 2614–2629 (2011)

    Article  Google Scholar 

  28. 28.

    Havens, J.: Mechanical properties of the Bakken Formation. In: Masters Abstracts International, vol 51 (2012)

  29. 29.

    Herman, J., Usher, W.: SALib: an open-source Python library for Sensitivity Analysis. The Journal of Open Source Software 2(9), 97 (2017)

    Article  Google Scholar 

  30. 30.

    Hill, M.C., Tiedeman, C.R.: Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley (2006)

  31. 31.

    Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems, pp 101–122. Springer (2015)

  32. 32.

    Jin, Z.L., Garipov, T., Volkov, O., Durlofsky, L.J., et al.: Reduced-order modeling of coupled flow-geomechanics problems. In: SPE Reservoir Simulation Conference, Society of Petroleum Engineers (2019)

  33. 33.

    Joodat, S.H.S., Nakshatrala, K.B., Ballarini, R.: Modeling flow in porous media with double porosity/permeability: a stabilized mixed formulation, error analysis, and numerical solutions, vol. 337 (2018)

  34. 34.

    Joshaghani, M.S., Joodat, S.H.S., Nakshatrala, K.B.: A stabilized mixed discontinuous Galerkin formulation for double porosity/permeability model. Accepted in Computer Methods in Applied Mechanics and Engineering (2019)

  35. 35.

    Lee, S., Mikelic, A., Wheeler, M.F., Wick, T.: Phase-field modeling of two phase fluid filled fractures in a poroelastic medium. Multiscale Model. Simul. 16(4), 1542–1580 (2018)

    Article  Google Scholar 

  36. 36.

    Lefebvre, S., Roblin, A., Varet, S., Durand, G.: A methodological approach for statistical evaluation of aircraft infrared signature. Reliab. Eng. Syst. Saf. 95(5), 484–493 (2010)

    Article  Google Scholar 

  37. 37.

    Liu, Y., Li, Y.: Revisit of the equivalence of the displacement discontinuity method and boundary element method for solving crack problems. Eng. Anal. Bound. Elem. 47, 64–67 (2014)

    Article  Google Scholar 

  38. 38.

    Makowski, D., Naud, C., Jeuffroy, M.H., Barbottin, A., Monod, H.: Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliab. Eng. Syst. Saf. 91(10-11), 1142–1147 (2006)

    Article  Google Scholar 

  39. 39.

    Mapakshi, N.K., Chang, J., Nakshatrala, K.B.: A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity. J. Comput. Phys. 359, 137–163 (2018)

    Article  Google Scholar 

  40. 40.

    Mathias, S.A., Tsang, C.F., van Reeuwijk, M.: Investigation of hydromechanical processes during cyclic extraction recovery testing of a deformable rock fracture. Int. J. Rock Mech. Min. Sci. 47(3), 517–522 (2010)

    Article  Google Scholar 

  41. 41.

    Mauthe, S., Miehe, C.: Hydraulic fracture in poro-hydro-elastic media. Mech. Res. Commun. 80, 69–83 (2017)

    Article  Google Scholar 

  42. 42.

    Mikelić, A., Wheeler, M., Wick, T.: Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium. GEM-Int. J. Geomathem. 10(1), 2 (2019)

    Article  Google Scholar 

  43. 43.

    Mudunuru, M.K., Karra, S., Kelkar, S.M., Harp, D.R., Guthrie, Jr, G.D., Viswanathan, H.S.: Reduced order models to predict thermal output for enhanced geothermal dystems. Tech. Rep. Los Alamos National Lab. (LANL), Los Alamos (2019)

  44. 44.

    Nakshatrala, K., Rajagopal, K.: A numerical study of fluids with pressure-dependent viscosity flowing through a rigid porous medium. Int. J. Numer. Methods Fluids 67(3), 342–368 (2011)

    Article  Google Scholar 

  45. 45.

    Nakshatrala, K.B., Joodat, S.H.S., Ballarini, R.: Modeling flow in porous media with double porosity/permeability: mathematical model, properties, and analytical solutions. J. Appl. Mech. 85(8), 081,009 (2018)

    Article  Google Scholar 

  46. 46.

    Nashawi, I.S., Malallah, A., Al-Bisharah, M.: Forecasting world crude oil production using multicyclic Hubbert model. Energy Fuels 24(3), 1788–1800 (2010)

    Article  Google Scholar 

  47. 47.

    Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)

    Article  Google Scholar 

  48. 48.

    Ozkan, E., Brown, M.L., Raghavan, R.S., Kazemi, H.: Comparison of fractured horizontal-well performance in conventional and unconventional reservoirs. In: SPE Western Regional Meeting, Society of Petroleum Engineers (2009)

  49. 49.

    Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T.: Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ. Modell. Softw. 79, 214–232 (2016)

    Article  Google Scholar 

  50. 50.

    Rezaei, A., Rafiee, M., Soliman, M., Morse, S.: Investigation of sequential and simultaneous well completion in horizontal wells using a non-planar, fully coupled hydraulic fracture simulator. In: 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association (2015)

  51. 51.

    Rezaei, A., Rafiee, M., Bornia, G., Soliman, M., Morse, S.: Protection Refrac: analysis of pore pressure and stress change due to refracturing of Legacy Wells. In: Unconventional Resources Technology Conference, Society of Petroleum Engineers (2017a)

  52. 52.

    Rezaei, A., Rafiee, M., Bornia, G., Soliman, M., Siddiqui, F.: The role of pore pressure depletion in propagation of new hydraulic fractures during Refaracturing of horizontal wells. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2017b)

  53. 53.

    Rezaei, A., Bornia, G., Rafiee, M., Soliman, M., Morse, S.: Analysis of refracturing in horizontal wells: insights from the poroelastic displacement discontinuity method. Int. J. Numer. Anal. Methods Geomech. 42 (11), 1306–1327 (2018)

    Article  Google Scholar 

  54. 54.

    Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14(2), 227–241 (1976)

    Article  Google Scholar 

  55. 55.

    Roussel, N.P., Sharma, M.M.: Role of stress reorientation in the success of refracture treatments in tight gas sands. SPE Prod. Oper. 27(04), 346–355 (2012)

    Google Scholar 

  56. 56.

    Safari, R., Lewis, R.E., Ma, X., Mutlu, U., Ghassemi, A.: Fracture curving between tightly spaced horizontal wells. In: Unconventional Resources Technology Conference, San Antonio, Texas, 20-22 July 2015, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, pp. 493–509 (2015)

  57. 57.

    Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, New York (2004)

  58. 58.

    Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global sensitivity analysis: the primer. Wiley, New York (2008)

  59. 59.

    Shou, K.J.: A superposition scheme to obtain fundamental boundary element solutions in multi-layered elastic media. Int. J. Numer. Anal. Methods Geomech. 24(10), 795–814 (2000)

    Article  Google Scholar 

  60. 60.

    Shou, K.J., Napier, J.: A two-dimensional linear variation displacement discontinuity method for three-layered elastic media. Int. J. Rock Mech. Min. Sci. 36(6), 719–729 (1999)

    Article  Google Scholar 

  61. 61.

    Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Modell. Comput. Exper. 1(4), 407–414 (1993)

    Google Scholar 

  62. 62.

    Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. comput. Simul. 55(1-3), 271–280 (2001)

    Article  Google Scholar 

  63. 63.

    Soliman, M.Y., Dusterhoft, R.: Fracturing Horizontal Wells. McGraw Hill Professional, New York (2016)

  64. 64.

    Soliman, M.Y., Pongratz, R., Rylance, M., Prather, D.: Fracture treatment optimization for horizontal well completion. In: Paper SPE 102616 Presented at the SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, pp. 3–6 (2006)

  65. 65.

    Tandon, S.: Identification of Productive Zones in Unconventional Reservoirs. PhD thesis, The University of Texas at Austin (2015)

  66. 66.

    Tian, W.: A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 20, 411–419 (2013)

    Article  Google Scholar 

  67. 67.

    Turner, D., Nakshatrala, K., Martinez, M.: Framework for coupling flow and deformation of a porous solid. Int. J. Geomech. 15(5), 04014,076 (2014)

    Article  Google Scholar 

  68. 68.

    Um, W., Jung, H.B., Kabilan, S., Suh, D.M., Fernandez, C.A.: Geochemical and Geomechanical Effects on Wellbore Cement Fractures: Data Information for Wellbore Reduced Order Model. Tech. Rep. Pacific Northwest National Lab. (PNNL), Richland (2014)

  69. 69.

    Vandamme, L., Detournay, E., Cheng, A.D.: A two-dimensional poroelastic displacement discontinuity method for hydraulic fracture simulation. Int. J. Numer. Anal. Methods Geomech. 13(2), 215–224 (1989)

    Article  Google Scholar 

  70. 70.

    Verde, A.: Global sensitivity analysis of geomechanical fractured reservoir parameters. In: 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association (2015)

  71. 71.

    Vermylen, J.P.: Geomechanical Studies of the Barnett Shale. Stanford University, Texas (2011)

  72. 72.

    Volkova, E., Iooss, B., Van Dorpe, F.: Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site. Stoch. Env. Res. Risk A. 22(1), 17–31 (2008)

    Article  Google Scholar 

  73. 73.

    Wang, C., Zeng, Z., et al.: Overview of geomechanical properties of Bakken formation in Williston Basin, North Dakota. In: 45th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association (2011)

  74. 74.

    Warpinski, N., Kramm, R.C., Heinze, J.R., Waltman, C.K.: Comparison of single-and dual-array microseismic mapping techniques in the Barnett shale. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2005)

  75. 75.

    Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting, and computer experiments. Technometrics 34(1), 15–25 (1992)

    Article  Google Scholar 

  76. 76.

    Westwood, R.F., Toon, S.M., Cassidy, N.J.: A sensitivity analysis of the effect of pumping parameters on hydraulic fracture networks and local stresses during shale gas operations. Fuel 203, 843–852 (2017)

    Article  Google Scholar 

  77. 77.

    Wilson, Z.A., Landis, C.M.: Phase-field modeling of hydraulic fracture. J. Mech. Phys. Solids 96, 264–290 (2016)

    Article  Google Scholar 

  78. 78.

    Witarto, W., Nakshatrala, K.B., Mo, Y.L. Global sensitivity analysis of frequency band gaps in one-dimensional phononic crystals. Mechanics of Materials. https://doi.org/10.1016/j.mechmat.2019.04.005 (2019)

  79. 79.

    Yang, Y., Zoback, M., Simon, M., Dohmen, T.: An integrated geomechanical and microseismic study of multi-well hydraulic fracture stimulation in the Bakken formation. In: Unconventional Resources Technology Conference, Society of Exploration Geophysicists, American Association of Petroleum, pp. 534–543 (2013)

  80. 80.

    Yu, W., Luo, Z., Javadpour, F., Varavei, A., Sepehrnoori, K.: Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs. J. Pet. Sci. Eng. 113, 1–7 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Rezaei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A. Definition of the kernels

For the reader’s benefit, we present the equations related to the influence of a point displacement discontinuity and a fluid source distributed over a straight line of the source points. For a list of complete equations, one may refer to [12] and [69].

A.1 Influence of a point fluid source

The required integral for constant temporal distribution and constant spatial distribution of a point source displacement discontinuity is given by:

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{t}}{\int}_{-a}^{a}\mathcal{F}\text{dx}^{\prime}d\tau \end{array} $$

where \(\mathcal {F}\equiv \mathcal {F}(x-x^{\prime },y;t-\tau )\) denotes the singular solution (Green’s function). Solving the above integral for a piecewise constant displacement discontinuity element and a constant time discretization gives the pore pressure pp, x component of stress σxx, y component of stress σyy, and shear stress σxy at the target point due to a fluid source at the source point as follows:

$$ \begin{array}{@{}rcl@{}} {p_{p}^{q}} & =& \frac{1}{4\pi\kappa}{\int}_{-a}^{a} \text{Ei}(\zeta^{2})\text{dx}^{\prime} \end{array} $$
(A.1a)
$$ \begin{array}{@{}rcl@{}} \sigma_{xx}^{q} &=& \frac{\alpha (1-2\nu)}{8\pi\kappa(1-\nu)}\left\{\left[-(x-x^{\prime})\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}})-(x-x^{\prime})\text{Ei}(\zeta^{2})\right]^{a}_{-a}-2{\int}_{-a}^{a}\text{Ei}(\zeta^{2})\text{dx}^{\prime}\right\} \end{array} $$
(A.1b)
$$ \begin{array}{@{}rcl@{}} \sigma_{yy}^{q} & =& \frac{\alpha (1-2\nu)}{8\pi\kappa(1-\nu)}\left[(x-x^{\prime})\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}})+(x-x^{\prime})\text{Ei}(\zeta^{2})\right]^{a}_{-a} \end{array} $$
(A.1c)
$$ \begin{array}{@{}rcl@{}} \sigma_{xy}^{q} & =& \frac{\alpha (1-2\nu)}{8\pi\kappa(1-\nu)} \left[-y\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}})-y\text{Ei}(\zeta^{2})\right]_{-a}^{a} \end{array} $$
(A.1d)

In the above equations, the superscript q is referring to the changes due to fluid source. κ is the mobility and is defined as the ratio of the absolute permeability of the rock to the fluid viscosity (i.e., \(\frac {k}{\mu }\)). α is the Biot’s poroelastic coefficient, ν is the drained Poisson ratio, and ζ is a dimensionless parameter defined as follows:

$$ \begin{array}{@{}rcl@{}} \zeta = \frac{r}{2\sqrt{\text{ct}}} \end{array} $$
(A.2)

where c is the diffusivity coefficient, r is the direct distance between source and target displacement discontinuity elements, x and y are the relative coordinates of the source point with respect to the local coordinate system of the target element, \(x^{\prime }\) takes the values of − a, and a that is fracture half-length. Also, Ei(x) is the exponential integral and is defined as follows:

$$ \begin{array}{@{}rcl@{}} \text{Ei}(x) = {\int}_{x}^{\infty} \frac{e^{-u}}{u}\text{du} \end{array} $$
(A.3)

where erf(x) is defined as the error function of x and is defined as follows:

$$ \begin{array}{@{}rcl@{}} \text{erf}(x) = \frac{2}{\sqrt{\pi}}{{\int}_{0}^{x}}e^{-u^{2}}\text{du} \end{array} $$
(A.4)

A.2 Influence of a point displacement discontinuity

The required integral for constant temporal distribution and constant spatial distribution is given by:

$$ \begin{array}{@{}rcl@{}} {{\int}_{0}^{t}}{\int}_{-a}^{a}\mathcal{F}dx^{\prime}d\tau \end{array} $$

where \(\mathcal {F} \equiv \mathcal {F}(x-x^{\prime },y;t-\tau )\) denotes the singular solution (Green’s function). Solving the above integral for a piecewise constant displacement discontinuity element and a constant time discretization gives the pore pressure pp, x component of stress σxx, y component of stress σyy, and shear stress σxy at the target point due to a normal displacement discontinuity at the source point as [12].

A.2.1 Normal displacement discontinuity at the source point

$$ \begin{array}{@{}rcl@{}} p_{p}^{\text{dn}} &=& \frac{\mu({\nu}_{u}-\nu)}{2\pi\alpha(1-2\nu)(1-{\nu}_{u})}\left[-\frac{2(x-x^{\prime})}{r^{2}}\left( 1-e^{-{\zeta}^{2}}\right)\right]_{-a}^{a} \end{array} $$
(A.5a)
$$ \begin{array}{@{}rcl@{}} \sigma_{\text{xx}} & =& \frac{\mu}{2\pi(1-\nu)}\left\{\frac{(x-x^{\prime})^{3}-(x-x^{\prime})y^{2}}{r^{4}}+\left( \frac{\nu_{u}-\nu}{1-\nu_{u}}\right) \left[\frac{(x-x^{\prime})^{3}-(x-x^{\prime})y^{2}}{r^{4}} \right. \right. \\ && -\left. \left. \frac{(x-x^{\prime})^{3}-3(x-x^{\prime})y^{2}}{r^{4}}\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}}) - \frac{2(x-x^{\prime})y^{2}}{r^{4}}e^{-\zeta^{2}} \right]\right\}_{-a}^{a} \end{array} $$
(A.5b)
$$ \begin{array}{@{}rcl@{}} \sigma_{\text{yy}}^{\text{dn}} &=& \frac{\mu}{2\pi(1-\nu)}\left\{\frac{(x-x^{\prime})^{3}+3(x-x^{\prime})y^{2}}{r^{4}}+\left( \frac{\nu_{u}-\nu}{1-\nu_{u}}\right) \left[\frac{(x-x^{\prime})^{3}-3(x-x^{\prime})y^{2}}{r^{4}} \right. \right. \\& &+ \left. \left. \frac{(x-x^{\prime})^{3}-3(x-x^{\prime})y^{2}}{r^{4}}\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}}) - \frac{2(x-x^{\prime})^{3}}{r^{4}}e^{-\zeta^{2}} \right]\right\}_{-a}^{a} \end{array} $$
(A.5c)
$$ \begin{array}{@{}rcl@{}} \sigma_{\text{xy}}^{\text{dn}} &=& \frac{\mu}{2\pi(1-\nu)}\left\{\frac{(x-x^{\prime})^{2}y-y^{3}}{r^{4}}+\left( \frac{\nu_{u}-\nu}{1-\nu_{u}}\right) \left[\frac{(x-x^{\prime})^{2}y-y^{3}}{r^{4}} \right. \right. \\ & &- \left. \left. \frac{3(x-x^{\prime})^{2}y-y^{3}}{r^{4}}\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}}) + \frac{2(x-x^{\prime})^{2}y}{r^{4}}e^{-\zeta^{2}} \right]\right\}_{-a}^{a} \end{array} $$
(A.5d)
Table 4 Coefficients of the reduced-order model for pore pressure at point 1 (5.2a)–(5.2d)

In the above equations,the superscript dn is referring to the changes due to a normal displacement discontinuity.

A.2.2 Shear displacement discontinuity at the source point

$$ \begin{array}{@{}rcl@{}} p_{p}^{\text{ds}} &=& \frac{\mu(\nu_{u}-\nu)}{2\pi\alpha(1-2\nu)(1-\nu_{u})}\left[\frac{2y}{r^{2}}\left( 1-e^{-\zeta^{2}}\right)\right]_{-a}^{a} \end{array} $$
(A.6a)
$$ \begin{array}{@{}rcl@{}} \sigma_{\text{xx}}^{\text{ds}} &=& \frac{\mu}{2\pi(1-\nu)}\left\{\frac{-3(x-x^{\prime})^{2}y-y^{3}}{r^{4}}+\left( \frac{\nu_{u}-\nu}{1-\nu_{u}}\right) \left[\frac{-3(x-x^{\prime})^{2}y-y^{3}}{r^{4}} \right. \right. \\&&+ \left. \left. \frac{3(x-x^{\prime})^{2}y-y^{3}}{r^{4}}\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}}) + \frac{2y^{3}}{r^{4}}e^{-\zeta^{2}} \right]\right\}_{-a}^{a} \end{array} $$
(A.6b)
$$ \begin{array}{@{}rcl@{}} \sigma_{\text{yy}}^{\text{ds}} &=& \frac{\mu}{2\pi(1-\nu)}\left\{\frac{(x-x^{\prime})^{2}y-y^{3}}{r^{4}}+\left( \frac{\nu_{u}-\nu}{1-\nu_{u}}\right) \left[\frac{(x-x^{\prime})^{2}y-y^{3}}{r^{4}} \right. \right. \\&&- \left. \left. \frac{3(x-x^{\prime})^{2}y-y^{3}}{r^{4}}\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}}) + \frac{2(x-x^{\prime})^{2}y}{r^{4}}e^{-\zeta^{2}} \right]\right\}_{-a}^{a} \end{array} $$
(A.6c)
$$ \begin{array}{@{}rcl@{}} \sigma_{\text{xy}}^{\text{ds}} &=& \frac{\mu}{2\pi(1-\nu)}\left\{\frac{(x-x^{\prime})^{3}-(x-x^{\prime})y^{2}}{r^{4}}+\left( \frac{\nu_{u}-\nu}{1-\nu_{u}}\right) \left[\frac{(x-x^{\prime})^{3}-(x-x^{\prime})y^{2}}{r^{4}} \right. \right. \\&&+ \left. \left. \frac{3(x-x^{\prime})y^{2}-(x-x^{\prime})^{3}}{r^{4}}\frac{1}{\zeta^{2}}(1-e^{-\zeta^{2}}) - \frac{2(x-x^{\prime})y^{2}}{r^{4}}e^{-\zeta^{2}} \right]\right\}_{-a}^{a} \end{array} $$
(A.6d)

In the above equations,the superscript ds is referring to the changes due to a shear displacement discontinuity.

B. Coefficients of the reduced-order models

Table 5 Coefficients of the reduced-order model for the minimum horizontal stress at point 1 (5.3a)–(5.3g)
Table 6 Coefficients of the reduced-order model for the maximum horizontal stress at point 1 (5.5a)–(5.5g)
Table 7 Coefficients of the reduced-order model for pore pressure at point 5 (5.6a)–(5.6e)
Table 8 Coefficients of the first-order Sobol functions for the minimum horizontal stress at point 5 (5.7a)–(5.7g)
Table 9 Coefficients of the second-order Sobol functions for the minimum horizontal stress at point 5 (5.7h)–(5.7l)
Table 10 Coefficients of the reduced-order model for the maximum horizontal stress at point 5 (5.8a)–(5.8g)
Table 11 Coefficients of the reduced-order model for the pore pressure at point 6 (5.9a)–(5.9g)
Table 12 Coefficients of the reduced-order model for the minimum horizontal stress at point 6 (5.10a)–(5.10c)
Table 13 Coefficients of the reduced-order model for the maximum horizontal stress at point 6 (5.11a)–(5.11h)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A., Nakshatrala, K.B., Siddiqui, F. et al. A global sensitivity analysis and reduced-order models for hydraulically fractured horizontal wells. Comput Geosci 24, 995–1029 (2020). https://doi.org/10.1007/s10596-019-09896-7

Download citation

Keywords

  • Hydraulic fracturing
  • Refracturing
  • Poroelastic displacement discontinuity
  • Sobol method
  • Global sensitivity analysis
  • Reduced-order model (ROM)