Skip to main content
Log in

Advances in Gaussian random field generation: a review

  • Review Article
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Gaussian (normal) distribution is a basic continuous probability distribution in statistics, it plays a substantial role in scientific and engineering problems that related to stochastic phenomena. This paper aims to review state-of-the-art of Gaussian random field generation methods, their applications in scientific and engineering issues of interest, and open-source software/packages for Gaussian random field generation. To this end, first, we briefly introduce basic mathematical concepts and theories in the Gaussian random field, then seven commonly used Gaussian random field generation methods are systematically presented. The basic idea, mathematical framework of each generation method are introduced in detail and comparisons of these methods are summarized. Then, representative applications of the Gaussian random field in various areas, especially of engineering interest in recent two decades, are reviewed. For readers’ convenience, four representative example codes are provided, and several relevant up-to-date open-source software and packages that freely available from the Internet are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamsen, P.: A review of Gaussian random fields and correlation functions (1997)

  2. Adler, R.J., Taylor, J.E.: Random fields and geometry. Springer Science & Business Media (2009)

  3. Alkhatib, A.: Applying the multi-level Monte Carlo method to quantify uncertainty for chemical eor processes. In: Second EAGE Integrated Reservoir Modelling Conference (2014)

  4. Bachmayr, M., Cohen, A., Migliorati, G.: Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients. J. Fourier Anal. Appl. 24(3), 621–649 (2018)

    Google Scholar 

  5. Bari, M.W., Shahin, M.A.: Probabilistic design of ground improvement by vertical drains for soil of spatially variable coefficient of consolidation. Geotext. Geomembr. 42(1), 1–14 (2014). https://doi.org/10.1016/j.geotexmem.2013.11.001

    Article  Google Scholar 

  6. Beaudoin, A., De Dreuzy, J-R., Erhel, J., Pichot, G.: Convergence analysis of macro spreading in 3D heterogeneous porous media. In: ESAIM: Proceedings, vol. 41, pp 59–76, EDP Sciences (2013)

  7. Beckmann, C., Hohe, J.: Effects of material uncertainty in the structural response of metal foam core sandwich beams. Compos. Struct. 113(1), 382–395 (2014). https://doi.org/10.1016/j.compstruct.2014.03.030

    Article  Google Scholar 

  8. Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013). https://doi.org/10.1016/j.advwatres.2012.04.005

    Article  Google Scholar 

  9. Bergström, D., Powell, J., Kaplan, A.: A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces. J. Appl. Phys. 101(11), 113504 (2007)

    Google Scholar 

  10. Blanchard, P., Coulaud, O., Darve, E.: Fast hierarchical algorithms for generating Gaussian random fields. Ph.D. thesis, Inria Bordeaux Sud-Ouest (2015)

  11. Boschan, A., Nœtinger, B.: Scale dependence of effective hydraulic conductivity distributions in 3D heterogeneous media: a numerical study. Transp. Porous Media 94(1), 101–121 (2012). https://doi.org/10.1007/s11242-012-9991-2

    Article  Google Scholar 

  12. Cai, J.S., Yan, E.C., Yeh, T.C.J., Zha, Y.Y.: Effects of heterogeneity distribution on hillslope stability during rainfalls. Water Sci. Eng. 9(2), 134–144 (2016)

    Google Scholar 

  13. Chen, N.Z., Soares, C.G.: Spectral stochastic finite element analysis for laminated composite plates. Comput. Methods Appl. Mech. Eng. 197(51-52), 4830–4839 (2008)

    Google Scholar 

  14. Chen, X., Liu, J., Xie, N., Sun, H.: Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method. Sci. Cold Arid Reg. 7(4), 0354–0364 (2015)

    Google Scholar 

  15. Cheng, Y., Zhang, L., Li, J., Zhang, L.M., Wang, J., Wang, D.: Consolidation in spatially random unsaturated soils based on coupled flow-deformation simulation. Int. J. Numer. Anal. Methods Geomech. 41(5), 682–706 (2017)

    Google Scholar 

  16. Christakos, G.: Random field models in earth sciences. Courier Corporation (2012)

  17. Davis, M.W.: Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math. Geol. 19(2), 91–98 (1987). https://doi.org/10.1007/BF00898189

    Article  Google Scholar 

  18. Depina, I., Le, T., Eiksund, G., Benz, T: Cyclic behavior of laterally loaded piles in soils with variable properties. In: Proceedings of the International Offshore and Polar Engineering Conference, vol. 9, pp 583–588 (2013)

  19. Dietrich, C.R., Newsam, G.N.: Efficient generation of conditional simulations by chebyshev matrix polynomial approximations to the symmetric square root of the covariance matrix. Math. Geol. 27(2), 207–228 (1995). https://doi.org/10.1007/BF02083211

    Article  Google Scholar 

  20. Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–1107 (1997). https://doi.org/10.1137/S1064827592240555. http://epubs.siam.org/doi/10.1137/S1064827592240555

    Google Scholar 

  21. Dilip, D.M., Sivakumar Babu, G.: Influence of spatial variability on pavement responses using latin hypercube sampling on two-dimensional random fields. J. Mater. Civ. Eng. 26(11), 04014083 (2013)

    Google Scholar 

  22. Dimitrakopoulos, R., Luo, X.: Generalized sequential gaussian simulation on group size ν and screen-effect approximations for large field simulations. Math. Geol. 36(5), 567–591 (2004)

    Google Scholar 

  23. Drakos, S., Pande, G.: Stochastic finite element analysis for transport phenomena in geomechanics using polynomial chaos. Global J. Res. Eng. E: Civ Struct 15(2) (2015)

  24. Van den Eijnden, A., Hicks, M.: Conditional simulation for characterizing the spatial variability of sand state. In: Proceedings of the 2nd International Symposium on Computational Geometry, Croatia, pp 288–296 (2011)

  25. Eliáš, J., Vořechovskỳ, M., Le, J.L.: Lattice modeling of concrete fracture including material spatial randomness. Eng. Mech. 20, 413–426 (2013)

    Google Scholar 

  26. Eliáš, J., Vořechovskỳ, M., Skoček, J., Bažant, Z.P.: Stochastic discrete meso-scale simulations of concrete fracture: comparison to experimental data. Eng. Fract. Mech. 135, 1–16 (2015)

    Google Scholar 

  27. Emery, X., Furrer, R., Porcu, E.: A turning bands method for simulating isotropic Gaussian random fields on the sphere. Stat. Probab. Lett. https://doi.org/10.1016/j.spl.2018.07.017 (2018)

    Google Scholar 

  28. Emery, X., Lantuéjoul, C.: TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput. Geosci. 32(10), 1615–1628 (2006). https://doi.org/10.1016/j.cageo.2006.03.001

    Article  Google Scholar 

  29. Feischl, M., Kuo, F.Y., Sloan, I.H.: Fast random field generation with h-matrices. Numer. Math. 140 (3), 639–676 (2018)

    Google Scholar 

  30. Fenton, G.A., Griffiths, D.: Statistics of block conductivity through a simple bounded stochastic medium. Water Resour. Res. 29(6), 1825–1830 (1993)

    Google Scholar 

  31. Fenton, G.A., Griffiths, D.: Random field generation and the local average subdivision method. In: Probabilistic Methods in Geotechnical Engineering. https://doi.org/10.1007/978-3-211-73366-0_9. http://link.springer.com/10.1007/978-3-211-73366-0_9, pp 201–223. Springer, Vienna (2007)

  32. Fenton, G.A., Griffiths, D.V.: Probabilistic foundation settlement on spatially random soil. J. Geotech. Geoenviron. Eng. 128(5), 381–390 (2002). https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381). http://ascelibrary.org/doi/abs/10.1061/(ASCE)1090-0241(2002)128:5(381)

    Google Scholar 

  33. Fenton, G.A., Griffiths, D.V.: Risk assessment in geotechnical engineering, vol. 461. Wiley Online Library, New York (2008)

    Google Scholar 

  34. Fenton, G.A., Vanmarcke, E.H.: Simulation of random fields via local average subdivision. J. Eng. Mech. 116(8), 1733–1749 (1990). https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1733). http://ascelibrary.org/doi/10.1061/%28ASCE%290733-9399%281990%29116%3A8%281733%29

    Google Scholar 

  35. Garzón, L.X., Caicedo, B., Sánchez-Silva, M., Phoon, K.K.: Physical modelling of soil uncertainty. Int. J. Phys. Model. Geotech. 15(1), 19–34 (2015)

    Google Scholar 

  36. Ghanem, R.G., Spanos, P.D.: Stochastic finite element method: response statistics. In: Stochastic Finite Elements: a Spectral Approach, pp 101–119. Springer (1991)

  37. Goda, K., Yasuda, T., Mori, N., Mai, P.M.: Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: application to the 2011 Tohoku earthquake. J. Geophys. Res. Oceans 120(6), 4552–4575 (2015)

    Google Scholar 

  38. Gómez-Hernández, J.J., Journel, A.G.: Joint sequential simulation of multigaussian fields. In: Geostatistics Troia’92, pp 85–94. Springer (1993)

  39. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131(2), 329–368 (2015)

    Google Scholar 

  40. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Analysis of circulant embedding methods for sampling stationary random fields. SIAM J. Numer. Anal. 56(3), 1871–1895 (2018). https://doi.org/10.1137/17M1149730. https://epubs.siam.org/doi/10.1137/17M1149730

    Google Scholar 

  41. Griffiths, D., Fenton, G.A.: Probabilistic slope stability analysis by finite elements. J. Geotech. Geoenviron. 130(5), 507–518 (2004)

    Google Scholar 

  42. Griffiths, D., Huang, J., Fenton, G.: Probabilistic slope stability analysis using RFEM with non-stationary random fields. In: Risk, V., Schweckendiek, T., van Tol, A.F., Pereboom, D., et al. (eds.) Geotechnical Safety, pp 704–709 (2015)

  43. Griffiths, D., Paiboon, J., Huang, J., Fenton, G.: Numerical analysis of the influence of porosity and void size on soil stiffness using random fields. Comput. Methods Geomech.: Front. New Appli. 1, 21–27 (2011)

    Google Scholar 

  44. Griffiths, D.V., Huang, J., Fenton, G.A.: Influence of spatial variability on slope reliability using 2-D random fields. J. Geotech. Geoenviron. Eng. 135(10), 1367–1378 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099. http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0000099

    Google Scholar 

  45. Guo, Z., Brusseau, M.L.: The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems. Hydrol. Process. 31(26), 4748–4756 (2017). https://doi.org/10.1002/hyp.11393

    Article  Google Scholar 

  46. Gutjahr, A., Bullard, B., Hatch, S.: General joint conditional simulations using a fast Fourier transform method. Math. Geol. 29(3), 361–389 (1997)

    Google Scholar 

  47. Gutjahr, A.L.: Fast Fourier transforms for random field generation: project report for Los Alamos grant to New Mexico Tech. Ph.D. thesis, New Mexico Institute of Mining and Technology (1989)

  48. Gyasi-Agyei, Y., Pegram, G.: Interpolation of daily rainfall networks using simulated radar fields for realistic hydrological modelling of spatial rain field ensembles. J. Hydrol. 519(PA), 777–791 (2014). https://doi.org/10.1016/j.jhydrol.2014.08.006

    Article  Google Scholar 

  49. Hackbusch, W.: Hierarchical matrices: algorithms and analysis, vol. 49. Heidelberg, Berlin (2015)

    Google Scholar 

  50. Herbrandt, S., Ligges, U., Ferreira, M.P., Kansteiner, M., Biermann, D., Tillmann, W., Weihs, C.: Model based optimization of a statistical simulation model for single diamond grinding. Comput. Stat. 33(3), 1127–1143 (2018). https://doi.org/10.1007/s00180-016-0669-z. http://link.springer.com/10.1007/s00180-016-0669-z

    Google Scholar 

  51. Hicks, M.A., Samy, K.: Influence of heterogeneity on undrained clay slope stability. Q. J. Eng. Geol. Hydrogeol. 35(1), 41–49 (2002)

    Google Scholar 

  52. Huang, J., Griffiths, D.V.: Determining an appropriate finite element size for modelling the strength of undrained random soils. Comput. Geotech. 69, 506–513 (2015). https://doi.org/10.1016/j.compgeo.2015.06.020

    Article  Google Scholar 

  53. Hunger, L., Cosenza, B., Kimeswenger, S., Fahringer, T: Random fields generation on the GPU with the spectral turning bands method. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8632 LNCS, 656–667 (2014). https://doi.org/10.1007/978-3-319-09873-9_55

    Article  Google Scholar 

  54. Hunger, L., Cosenza, B., Kimeswenger, S., Fahringer, T.: Spectral turning bands for efficient Gaussian random fields generation on GPUs and accelerators. Concurr. Comput. 27(16), 4122–4136 (2015). https://doi.org/10.1002/cpe.3550. http://doi.wiley.com/10.1002/cpe.3550

    Google Scholar 

  55. Jamshidi Chenari, R., Alaie, R.: Effects of anisotropy in correlation structure on the stability of an undrained clay slope. Georisk 9(2), 109–123 (2015). https://doi.org/10.1080/17499518.2015.1037844

    Article  Google Scholar 

  56. Javadi, A., El-Askary, W.A.: Numerical prediction of turbulent flow structure generated by a synthetic cross-jet into a turbulent boundary layer. Int. J. Numer. Methods Fluids 69(7), 1219–1236 (2012)

    Google Scholar 

  57. Jha, S.K.: Effect of spatial variability of soil properties on slope reliability using random finite element and first order second moment methods. Indian Geotech. J. 45(2), 145–155 (2015). https://doi.org/10.1007/s40098-014-0118-2

    Article  Google Scholar 

  58. Jiang, S.H., Li, D.Q., Cao, Z.J., Zhou, C.B., Phoon, K.K.: Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation. J. Geotech. Geoenviron. Eng. 141(2), 1–13 (2014). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227. http://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0001227%5Cn. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227%5Cn. http://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29GT.1943-5606

    Google Scholar 

  59. Johari, A., Rezvani Pour, J., Javadi, A.: Reliability analysis of static liquefaction of loose sand using the random finite element method. Eng. Comput. 32(7), 2100–2119 (2015). https://doi.org/10.1108/EC-07-2014-0152. http://www.emeraldinsight.com/doi/10.1108/EC-07-2014-0152

    Google Scholar 

  60. Johnson, M.E.: Multivariate statistical simulation: a guide to selecting and generating continuous multivariate distributions. Wiley, New York (2013)

    Google Scholar 

  61. Journel, A.G.: Geostatistics for conditional simulation of ore bodies. Econ. Geol. 69(5), 673–687 (1974)

    Google Scholar 

  62. Klammler, H., Hatfield, K., McVay, M., Da Luz, J.A.G.: Approximate up-scaling of geo-spatial variables applied to deep foundation design. Georisk 5(3-4), 163–172 (2011). https://doi.org/10.1080/17499518.2010.546266

    Article  Google Scholar 

  63. Kozintsev, B.: Computations with Gaussian random fields. Ph.D. thesis, University of Maryland College Park (1999)

  64. Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)

    Google Scholar 

  65. Lang, A., Potthoff, J.: Fast simulation of Gaussian random fields. Monte Carlo Methods Appl. 17(3), 1–15 (2011). https://doi.org/10.1515/mcma.2011.009, arXiv:1105.2737%0A. https://www.degruyter.com/view/j/mcma.2011.17.issue-3/mcma.2011.009/mcma.2011.009.xml

    Google Scholar 

  66. Lavorato, D., Vanzi, I., Nuti, C., Monti, G.: Generation of non-synchronous earthquake signals. In: Risk and Reliability Analysis: Theory and Applications, pp 169–198. Springer (2017)

  67. Le Goc, R., Bouzeran, L., Darcel, C., Ivars, D.M., et al.: Using correlated random fields for modeling the spatial heterogeneity of rock. In: ISRM Regional Symposium-EUROCK 2015. International Society for Rock Mechanics and Rock Engineering (2015)

  68. Le Maître, O., Knio, O.M.: Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer Science & Business Media (2010)

  69. Le Ravalec, M., Noetinger, B., Hu, L.Y.: The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations. Math. Geol. 32(6), 701–723 (2000)

    Google Scholar 

  70. Li, D.Q., Xiao, T., Cao, Z.J., Zhou, C.B., Zhang, L.M.: Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation. Landslides 13(2), 293–303 (2016). https://doi.org/10.1007/s10346-015-0569-2

    Article  Google Scholar 

  71. Li, H., Zhang, D.: Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods. Water Resour. Res. 43(9), 1–13 (2007). https://doi.org/10.1029/2006WR005673

    Article  Google Scholar 

  72. Li, L., Chu, X.: Effect of 2-D random field discretization on failure probability and failure mechanism in probabilistic slope stability. Geotech. Geol. Eng. 34(2), 437–447 (2016). https://doi.org/10.1007/s10706-015-9955-8

    Article  Google Scholar 

  73. Li, S.G., Liu, Q.: Interactive ground water (IGW). Environ. Model. Softw. 21(3), 417–418 (2006)

    Google Scholar 

  74. Li, Y.J., Hicks, M.A., Vardon, P.J.: Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields. Comput. Geotech. 79, 159–172 (2016). https://doi.org/10.1016/j.compgeo.2016.05.027

    Article  Google Scholar 

  75. Litvinova, E., Dolya, G.: Modeling of fluctuations of laser radiation scattered on the reflector array in a turbulent atmosphere. In: 2011 11th International Conference on Laser and Fiber- Optical Networks Modeling (LFNM), pp 1–3. IEEE (2011)

  76. Liu, K., Hicks, M.A., Vardon, P.J., Jommi, C.: Probabilistic analysis of velocity distribution under earth embankments for piping investigation. Geotechnical Safety and Risk V Schweckendiek, T., van Tol, A.F., Pereboom, D., van Staveren, M. (eds.) . PMCBM Cools (2015)

  77. Liu, Y., Hu, J., Li, Y.P., Li, L.H.: Statistical evaluation of the overall strength of a soil-cement column under axial compression . Constr. Build. Mater. 132, 51–60 (2017)

    Google Scholar 

  78. Liu, Y., Zhang, W., Zhang, L., Zhu, Z., Hu, J., Wei, H.: Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods. Geosci. Front. 9(6), 1657–1664 (2018)

    Google Scholar 

  79. Loeve, M.: Probability theory. ii, vol. 46 of Graduate Texts in Mathematics (1978)

  80. Mai, P.M., Beroza, G.C.: A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res. Solid Earth 107(B11), ESE 10–1–ESE 10–21 (2002). https://doi.org/10.1029/2001JB000588. http://doi.wiley.com/10.1029/2001JB000588

    Google Scholar 

  81. Mantoglou, A.: Digital simulation of multivariate two- and three-dimensional stochastic processes with a spectral turning bands method. Math. Geol. 19(2), 129–149 (1987). https://doi.org/10.1007/BF00898192

    Article  Google Scholar 

  82. Mantoglou, A., Gelhar, L.W.: Stochastic modeling of large-scale transient unsaturated flow systems. Water Resour. Res. 23 (1), 37–46 (1987). https://doi.org/10.1029/WR023i001p00037. http://doi.wiley.com/10.1029/WR023i001p00037

    Google Scholar 

  83. Mantoglou, A., Wilson, J.L.: The turning bands method for simulation of random fields using line generation by a spectral method. Water Resour. Res. 18(5), 1379–1394 (1982). https://doi.org/10.1029/WR018i005p01379

    Article  Google Scholar 

  84. Massari, C., Yeh, T.C.J., Ferrante, M., Brunone, B., Meniconi, S.: Detection and sizing of extended partial blockages in pipelines by means of a stochastic successive linear estimator. J. Hydroinform. 16(2), 248 (2014). https://doi.org/10.2166/hydro.2013.172. http://jh.iwaponline.com/cgi/doi/10.2166/hydro.2013.172

    Google Scholar 

  85. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5(03), 439–468 (1973). https://doi.org/10.2307/1425829. https://www.cambridge.org/core/product/identifier/S0001867800039379/type/journal_article

    Google Scholar 

  86. Mejía, J.M., Rodríguez-Iturbe, I.: On the synthesis of random field sampling from the spectrum: an application to the generation of hydrologic spatial processes. Water Resour. Res. 10(4), 705–711 (1974). https://doi.org/10.1029/WR010i004p00705. http://doi.wiley.com/10.1029/WR010i004p00705

    Google Scholar 

  87. Miguel, L.F.F., Riera, J.D., Iturrioz, I.: Influence of size on the constitutive equations of concrete or rock dowels. Int. J. Numer. Anal. Methods Geomech. 32(15), 1857–1881 (2008)

    Google Scholar 

  88. Müller, W.G.: Collecting spatial data: optimum design of experiments for random fields. Springer Science & Business Media (2007)

  89. Noetinger, B., Hume, L., Chatelin, R., Poncet, P.: Effective viscosity of a random mixture of fluids. Phys. Rev. Fluids 3(1), 014103 (2018)

    Google Scholar 

  90. Noh, H.C.: Plate response variability due to triple random parameters. KSCE J. Civ. Eng. 15(3), 517–526 (2011). https://doi.org/10.1007/s12205-011-1081-4. http://link.springer.com/10.1007/s12205-011-1081-4

    Google Scholar 

  91. Noh, H.C., Park, T.: Response variability of laminate composite plates due to spatially random material parameter. Comput. Methods Appl. Mech. Eng. 200(29-32), 2397–2406 (2011). https://doi.org/10.1016/j.cma.2011.03.020

    Article  Google Scholar 

  92. Nuttall, J.D.: Parallel implementation and application of the random finite element method. Ph.D. thesis, The University of Manchester (United Kingdom) (2011)

  93. Oliver, D.S.: Moving averages for Gaussian simulation in two and three dimensions. Math. Geol. 27(8), 939–960 (1995). https://doi.org/10.1007/BF02091660

    Article  Google Scholar 

  94. Paiboon, J., Griffiths, D.V., Huang, J., Fenton, G.A.: Numerical analysis of effective elastic properties of geomaterials containing voids using 3D random fields and finite elements. Int. J. Solids Struct. 50(20-21), 3233–3241 (2013). https://doi.org/10.1016/j.ijsolstr.2013.05.031

    Article  Google Scholar 

  95. Pan, Q., Dias, D.: Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis. Acta Geotech. 12(6), 1415–1429 (2017)

    Google Scholar 

  96. Pardo-Iguzquiza, E, Chica-Olmo, M: The Fourier integral method: an efficient spectral method for simulation of random fields. Math. Geol. 25(2), 177–217 (1993)

    Google Scholar 

  97. Park, M.H., Tretyakov, M.: A block circulant embedding method for simulation of stationary Gaussian random fields on block-regular grids. Int. J. Uncertain. Quantif 5(6), 527–544 (2015)

    Google Scholar 

  98. Pebesma, E., Graeler, B., Pebesma, M.E., Pebesma, M.E.: Package ‘gstat’ (2018)

  99. Pebesma, E.J.: Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30(7), 683–691 (2004). https://doi.org/10.1016/j.cageo.2004.03.012

    Article  Google Scholar 

  100. Podroužek, J., Vorel, J., Wan-wendner, R.: Random and gradient based fields in discrete particle models of heterogeneous materials (2017)

  101. Raabe, N., Thieler, A.M., Weihs, C., Fried, R., Rautert, C., Biermann, D.: Modeling material heterogeneity by Gaussian random fields for the simulation of inhomogeneous mineral subsoil machining. In: SIMUL (c), pp. 97–102 (2012)

  102. Rahman, M.M., Nguyen, H.B.K.: Applications of random finite element method in bearing capacity problems. In: ADVCOMP 2012 : the Sixth International Conference on Advanced Engineering Computing and Applications in Sciences Applications (c), pp 53–58 (2012)

  103. Riahi, A., Hazzard, J., Lorig, L., et al.: Heterogeneous distribution of the coefficient of permeability and an equivalent homogeneous approach. In: 46th US rock mechanics/geomechanics symposium. American Rock Mechanics Association (2012)

  104. Robin, M.J.L., Gutjahr, A.L., Sudicky, E.A., Wilson, J.L.: Cross-correlated random field generation with the direct Fourier transform method. Water Resour. Res. 29(7), 2385–2397 (1993). https://doi.org/10.1029/93WR00386

    Article  Google Scholar 

  105. Ruan, F., Mclaughlin, D.: An efficient multivariate random field generator using the fast Fourier transform. Adv. Water Resour. 21(5), 385–399 (1998)

    Google Scholar 

  106. Rungbanaphan, P., Honjo, Y., Yoshida, I.: Settlement prediction by spatial-temporal random process using Asaoka’s method. Georisk 4(4), 174–185 (2010). https://doi.org/10.1080/17499511003630546

    Article  Google Scholar 

  107. Rungbanaphan, P., Honjo, Y., Yoshida, I.: Spatial-temporal prediction of secondary compression using random field theory. Soils Found. 52(1), 99–113 (2012). https://doi.org/10.1016/j.sandf.2012.01.013

    Article  Google Scholar 

  108. Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Pfaff, B.: R Core Team (2017). Randomfields: simulation and analysis of random fields. r package version 3.1 50 (2017)

  109. Schlüter, S., Vogel, H.J.: On the reconstruction of structural and functional properties in random heterogeneous media. Adv. Water Resour. 34(2), 314–325 (2011). https://doi.org/10.1016/j.advwatres.2010.12.004

    Article  Google Scholar 

  110. Schlüter, S., Weller, U., Vogel, H.J.: Segmentation of X-ray microtomography images of soil using gradient masks. Comput. Geosci. 36(10), 1246–1251 (2010). https://doi.org/10.1016/j.cageo.2010.02.007

    Article  Google Scholar 

  111. Schwab, C., Todor, R.A.: Karhunen–Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217(1), 100–122 (2006). https://doi.org/10.1016/j.jcp.2006.01.048. http://linkinghub.elsevier.com/retrieve/pii/S0021999106000349

    Google Scholar 

  112. Shafei, B., Alipour, A.: Application of large-scale non-Gaussian stochastic fields for the study of corrosion-induced structural deterioration. Eng. Struct. 88, 262–276 (2015). https://doi.org/10.1016/j.engstruct.2014.12.024

    Article  Google Scholar 

  113. Shen, P., Zhang, L., Zhu, H.: Rainfall infiltration in a landslide soil deposit: importance of inverse particle segregation. Eng. Geol. 205, 116–132 (2016). https://doi.org/10.1016/j.enggeo.2015.09.008

    Article  Google Scholar 

  114. Shinozuka, M.: Simulation of multivariate and multidimensional random processes. J. Acoust. Soc. Am. 49 (1B), 357–368 (1971). https://doi.org/10.1121/1.1912338. http://asa.scitation.org/doi/10.1121/1.1912338

    Google Scholar 

  115. Shinozuka, M., Deodatis, G.: Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl. Mech. Rev. 49 (1), 29 (1996). https://doi.org/10.1115/1.3101883. http://appliedmechanicsreviews.asmedigitalcollection.asme.org/article.aspx?articleid=1395651

    Google Scholar 

  116. Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. Sound Vib. 25(1), 111–128 (1972). https://doi.org/10.1016/0022-460X(72)90600-1. http://www.sciencedirect.com/science/article/pii/0022460X72906001

    Google Scholar 

  117. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluids Eng. 123(2), 359 (2001). https://doi.org/10.1115/1.1369598. http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1429342

    Google Scholar 

  118. Smith, I.M., Griffiths, D.V., Margetts, L.: Programming the finite element method. Wiley, New York (2013)

    Google Scholar 

  119. Song, K.I., Cho, G.C., Lee, S.W.: Effects of spatially variable weathered rock properties on tunnel behavior. Probabilist. Eng. Mech. 26(3), 413–426 (2011)

    Google Scholar 

  120. Spencer, W.A.: Parallel stochastic and finite element modelling of clay slope stability in 3D. The University of Manchester (United Kingdom) (2007)

  121. Srivastava, M., Remy, N., Boucher, A., Wu, J.: Applied geostatistics with SGeMs: a user’s guide (2009)

  122. Stefanos, D.: Constitutive relations of stress and strain in stochastic finite element method. Amer. J. Math. 5(6), 164–173 (2015)

    Google Scholar 

  123. Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198(9-12), 1031–1051 (2009)

    Google Scholar 

  124. Tang, X.S., Li, D.Q., Zhou, C.B., Phoon, K.K.: Copula-based approaches for evaluating slope reliability under incomplete probability information. Struct. Saf. 52, 90–99 (2015)

    Google Scholar 

  125. Teatini, P., Ferronato, M., Gambolati, G., Baú, D., Putti, M.: Anthropogenic venice uplift by seawater pumping into a heterogeneous aquifer system. Water Resour. Res. 46(11), 1–16 (2010). https://doi.org/10.1029/2010WR009161

    Article  Google Scholar 

  126. Tian, H., Xu, T., Li, Y., Yang, Z., Wang, F.: Evolution of sealing efficiency for CO2 geological storage due to mineral alteration within a hydrogeologically heterogeneous caprock. Appl. Geochem. 63, 380–397 (2015). https://doi.org/10.1016/j.apgeochem.2015.10.002

    Article  Google Scholar 

  127. Tompson, A.F.B., Ababou, R., Gelhar, L.W.: Implementation of the three-dimensional turning bands random field generator. Water Resour. Res. 25(10), 2227–2243 (1989). https://doi.org/10.1029/WR025i010p02227. http://doi.wiley.com/10.1029/WR025i010p02227

    Google Scholar 

  128. Vanmarcke, E.: Random fields: analysis and synthesis. World Scientific, Singapore (2010)

    Google Scholar 

  129. Varkey, D., Hicks, M., Vardon, P.: Influence of spatial variability of shear strength parameters on 3D slope reliability and comparison of analysis methods. Georisk (GSP 284), pp. 400–409. https://doi.org/10.1061/9780784480717.038 (2017)

  130. Veganzones, M.A., Hernández, C.: On the use of a hybrid approach to contrast endmember induction algorithms. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6077 LNAI(PART 2), 69–76 (2010). https://doi.org/10.1007/978-3-642-13803-4_9

    Article  Google Scholar 

  131. Vogel, H.J., Weller, U., Ippisch, O.: Non-equilibrium in soil hydraulic modelling. J. Hydrol. 393(1-2), 20–28 (2010). https://doi.org/10.1016/j.jhydrol.2010.03.018

    Article  Google Scholar 

  132. Xenaki, A., Gerstoft, P., Mosegaard, K.: Modeling and detection of oil in sea water. J. Acoust. Soc. Am. 134(4), 2790–2798 (2013)

    Google Scholar 

  133. Xue, L., Dai, C., Wang, L.: Development of a general package for resolution of uncertainty-related issues in reservoir engineering. Energies 10(2), 197 (2017)

    Google Scholar 

  134. Zeng, X., Wang, D., Wu, J., Chen, X.: Reliability analysis of the groundwater conceptual model. Hum. Ecol. Risk Assess. 19(2), 515–525 (2013). https://doi.org/10.1080/10807039.2012.713822. http://www.tandfonline.com/doi/abs/10.1080/10807039.2012.713822

    Google Scholar 

  135. Zhang, D.: Stochastic methods for flow in porous media: coping with uncertainties. Elsevier, New York (2001)

    Google Scholar 

  136. Zhang, D., Lu, Z.: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loéve and polynomial expansions. J. Comput. Phys. 194(2), 773–794 (2004). https://doi.org/10.1016/j.jcp.2003.09.015

    Article  Google Scholar 

  137. Zhang, L.L., Cheng, Y., Li, J.H., Zhou, X.L., Jeng, D.S., Peng, X.Y.: Wave-induced oscillatory response in a randomly heterogeneous porous seabed. Ocean Eng. 111, 116–127 (2016). https://doi.org/10.1016/j.oceaneng.2015.10.016

    Article  Google Scholar 

  138. Zhang, W., Goh, A.T.: Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns. Tunn. Undergr. Sp. Tech. 32, 221–230 (2012)

    Google Scholar 

  139. Zheng, Z., Dai, H.: Simulation of multi-dimensional random fields by Karhunen–Loéve expansion. Comput. Methods. Appl. Mech. Eng. 324, 221–247 (2017). https://doi.org/10.1016/j.cma.2017.05.022

    Article  Google Scholar 

  140. Zhu, D., Griffiths, D.V., Huang, J., Fenton, G.A.: Probabilistic stability analyses of undrained slopes with linearly increasing mean strength. Géotechnique 67(8), 733–746 (2017). https://doi.org/10.1680/jgeot.16.P.223. http://www.icevirtuallibrary.com/doi/10.1680/jgeot.16.P.223

    Google Scholar 

  141. Zhu, H., Griffiths, D.V., Fenton, G.A., Zhang, L.: Undrained failure mechanisms of slopes in random soil. Eng. Geol. 191, 31–35 (2015). https://doi.org/10.1016/j.enggeo.2015.03.009

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the papers that contributing to our work and the figures that we reprinted from these papers, textbooks, and web resources. The authors would like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the overall quality of the paper.

Funding

This study is supported by the National Natural Science Foundation of China (No. 51874262) and the Research Funding from King Abdullah University of Science and Technology (KAUST) through the grant BAS/1/1351-01-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyu Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Matlab code corresponding to Section 2

Appendix: Matlab code corresponding to Section 2

Here, we provide the MATLAB code for four random field generation methods presented in Section 2. Interested readers may refer to the link https://github.com/YLiu-5/Random_Field_Generation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, J., Sun, S. et al. Advances in Gaussian random field generation: a review. Comput Geosci 23, 1011–1047 (2019). https://doi.org/10.1007/s10596-019-09867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09867-y

Keywords

Navigation