Skip to main content
Log in

Bayesian model calibration and optimization of surfactant-polymer flooding

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The physical models governing surfactant-polymer (SP) flooding process are subject to parametric uncertainties, accurate quantification of which is crucial for improved decision making. Moreover, history matching of SP flooding is an ill-posed problem, typically characterized by a multimodal posterior distribution of these model parameters. This paper presents a systematic approach for Bayesian history matching and uncertainty quantification in the model calibration stage of SP flooding using coreflood experimental data. The approach is as follows. First, we construct a surrogate of the computationally expensive physics-based model using a polynomial chaos expansion (PCE-proxy). Second, we formulate a Bayesian calibration problem for inferring the model parameters from a single coreflood experiment that measures pressure drop and oilcut profiles. Third, we solve the Bayesian calibration problem by sampling directly from the posterior using Markov chain Monte Carlo (MCMC). We validate the calibrated parameters by successfully predicting the result of two other coreflood experiments. Then, we extend this framework to stochastic multiobjective optimization of injection slug size design under uncertainties in model parameters (captured by the posterior of Bayesian calibration problem) and oil price (modeled as a geometric random walk with constant drift and volatility). To identify the Pareto frontier of the stochastic multiobjective optimization problem, we employ a variant of Bayesian global optimization (BGO), a class of algorithms capable of optimizing black-box, gradient-free, computationally expensive functions. In particular, we use the extended expected improvement over the dominated hypervolume to sequentially select simulations that seek to reveal the Pareto frontier. An addendum of the implemented BGO is that it quantifies the epistemic uncertainty about the Pareto frontier as induced by the limited number of simulations used to construct it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanonsen, S., Naevdal, G., Oliver, D., Reynolds, A., Valles, B.: The ensemble Kalman filter in reservoir engineering —- a review. SPE J, 14(3) (2009)

  2. Abidin, A., Puspasari, T., Nugroho, W.: Polymers for enhanced oil recovery technology. Procedia Chem. 4, 11–16 (2012). https://doi.org/10.1016/j.proche.2012.06.002

    Article  Google Scholar 

  3. Ahmed, H., Awotunde, A.A., Sultan, A.S., Al-Yousef, H.Y., et al.: Stochastic optimization approach to surfactant-polymer flooding. In: SPE/PAPG Pakistan Section Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2017)

  4. Al-Sofi, A.M., Blunt, M.J.: The design and optimization of polymer flooding under uncertainty. SPE Enhanced Oil Recovery Conference. https://doi.org/10.2118/145110-ms (2011)

  5. Alfi, M., Hosseini, S.A.: Integration of reservoir simulation, history matching, and 4d seismic for co2-eor and storage at Cranfield, Mississippi, USA. Fuel 175, 116–128 (2016). https://doi.org/10.1016/j.fuel.2016.02.032

    Article  Google Scholar 

  6. Alkhatib, A., King, P.: An approximate dynamic programming approachto decision making in the presence of uncertainty for surfactant-polymer flooding. Comput. Geosci. 18(2), 243–263 (2014). https://doi.org/10.1007/s10596-014-9406-2

    Article  Google Scholar 

  7. Alsofi, A.M., Liu, J.S., Han, M., Aramco, S.: Numerical simulation of surfactant–polymer coreflooding experiments for carbonates. J. Pet. Sci. Eng. 111, 184–196 (2013)

    Article  Google Scholar 

  8. Anderson, G.A.: Simulation of chemical flood enhanced oil recovery processes including the effects of reservoir wettability. Ph.D. thesis University of Texas at Austin (2006)

  9. Andonyadis, P.: Decision support for enhanced oil recovery projects. Ph.D thesis (2010)

  10. Aramideh, S., Borgohain, R., Naik, P.K., Johnston, C.T., Vlachos, P.P., Ardekani, A.M.: Multi-objective history matching of surfactant-polymer flooding. Fuel 228, 418–428 (2018). https://doi.org/10.1016/j.fuel.2018.04.069. https://www.sciencedirect.com/science/article/pii/S0016236118307014

    Article  Google Scholar 

  11. Aramideh, S., Vlachos, P.P., Ardekani, A.M.: Unstable displacement of non-aqueous phase liquids with surfactant and polymer. Transp. Porous Media, 1–20 (2018)

  12. Bailey, R., Baù, D.: Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution, Water Resour. Res., 46(12) (2010)

  13. Bazargan, H., Christie, M.: Bayesian model selection for complex geological structures using polynomial chaos proxy. Comput. Geosci. 21(3), 533–551 (2017). https://doi.org/10.1007/s10596-017-9629-0

    Article  Google Scholar 

  14. Bazargan, H., Christie, M., Elsheikh, A.H., Ahmadi, M.: Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion. Adv. Water Resour. 86, 385–399 (2015). https://doi.org/10.1016/j.advwatres.2015.09.009

    Article  Google Scholar 

  15. Bilionis, I., Zabaras, N.: Multi-output local gaussian process regression: Applications to uncertainty quantification. J. Comput. Phys. 231(17), 5718–5746 (2012)

    Article  Google Scholar 

  16. Bilionis, I., Zabaras, N.: Solution of inverse problems with limited forward solver evaluations: A Bayesian perspective. Inverse Probl. 30(1), 015004 (2013)

    Article  Google Scholar 

  17. Bilionis, I., Zabaras, N., Konomi, B.A., Lin, G.: Multi-output separable gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification. J. Comput. Phys. 241, 212–239 (2013)

    Article  Google Scholar 

  18. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25(2), 183–197 (2010). https://doi.org/10.1016/j.probengmech.2009.10.003

    Article  Google Scholar 

  19. Bonet-Cunha, L., Oliver, D., Redner, R., Reynolds, A.: A hybrid markov chain monte carlo method for generating permeability fields conditioned to multiwell pressure data and prior information. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/36566-ms (1996)

  20. Box, G.E., Tiao, G.C.: Bayesian Inference in Statistical Analysis, vol. 40. Wiley (2011)

  21. Brown, C., Smith, P.: The evaluation of uncertainty in surfactant eor performance prediction. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/13237-ms (1984)

  22. Caers, J.: Efficient gradual deformation using a streamline-based proxy method. J. Pet. Sci. Eng. 39(1-2), 57–83 (2003). https://doi.org/10.1016/s0920-4105(03)00040-8

    Article  Google Scholar 

  23. Caers, J.: Comparing the gradual deformation with the probability perturbation method for solving inverse problems. Mathematical Geology. https://doi.org/10.1007/s11004-007-9119-3 (2007)

  24. Chang, H., Liao, Q., Zhang, D.: Surrogate model based iterative ensemble smoother for subsurface flow data assimilation. Adv. Water Resour. 100, 96–108 (2017)

    Article  Google Scholar 

  25. Chatzis, I., Morrow, N.R.: Correlation of capillary number relationships for sandstone. Soc. Petroleum Eng. J. 24(05), 555–562 (1984). https://doi.org/10.2118/10114-pa

    Article  Google Scholar 

  26. Chen, Y., Oliver, D.S.: Levenberg–marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17(4), 689–703 (2013)

    Article  Google Scholar 

  27. Class, H., Mahl, L., Ahmed, W., Norden, B., Khn, M., Kempka, T.: Matching pressure measurements and observed co2 arrival times with static and dynamic modelling at the ketzin storage site. Energy Procedia 76, 623–632 (2015). https://doi.org/10.1016/j.egypro.2015.07.883

    Article  Google Scholar 

  28. Cui, H., Kelkar, M.G.: Automatic history matching of naturally fractured reservoirs and a case study. SPE Western Regional Meeting. https://doi.org/10.2118/94037-ms (2005)

  29. Dachanuwattana, S., Jin, J., Zuloaga-Molero, P., Li, X., Xu, Y., Sepehrnoori, K., Yu, W., Miao, J.: Application of proxy-based mcmc and edfm to history match a vaca muerta shale oil well. Fuel 220, 490–502 (2018). https://doi.org/10.1016/j.fuel.2018.02.018

    Article  Google Scholar 

  30. Dachanuwattana, S., Yu, W., Zuloaga-Molero, P., Sepehrnoori, K.: Application of assisted-history-matching workflow using proxy-based mcmc on a shale oil field case. J. Pet. Sci. Eng. 167, 316–328 (2018). https://doi.org/10.1016/j.petrol.2018.04.029

    Article  Google Scholar 

  31. Delshad, M., Pope, G.: Comparison of the three-phase oil relative permeability models Transport in Porous Media 4(1) (1989)

  32. Douarche, F., Da Veiga, S., Feraille, M., Enchéry, G., Touzani, S., Barsalou, R.: Sensitivity analysis and optimization of surfactant-polymer flooding under uncertainties. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 69(4), 603–617 (2014)

    Article  Google Scholar 

  33. Eaton, M.L., Sudderth, W.D.: Invariance of posterior distributions under reparametrization. Sankhya A 72(1), 101–118 (2010)

    Article  Google Scholar 

  34. Elsheikh, A.H., Jackson, M.D., Laforce, T.C.: Bayesian reservoir history matching considering model and parameter uncertainties. Math. Geosci. 44(5), 515–543 (2012). https://doi.org/10.1007/s11004-012-9397-2

    Article  Google Scholar 

  35. Emerick, A.A., Reynolds, A.C.: Combining the ensemble Kalman filter with Markov chain monte carlo for improved history matching and uncertainty characterization. SPE Reservoir Simulation Symposium. https://doi.org/10.2118/141336-ms (2011)

  36. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)

    Article  Google Scholar 

  37. Emmerich, M., Deutz, A.H., Klinkenberg, J.W.: Hypervolume-based expected improvement: Monotonicity properties and exact computation. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp 2147–2154. IEEE (2011)

  38. Emmerich, M., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Trans Evolut Comput 10(4), 421–439 (2006)

    Article  Google Scholar 

  39. Evensen, G., Hove, J., Meisingset, H., Reiso, E., Seim, K.S., Espelid: Using the enkf for assisted history matching of a north sea reservoir model. SPE Reservoir Simulation Symposium. https://doi.org/10.2118/106184-ms (2007)

  40. Fajraoui, N., Marelli, S., Sudret, B.: Sequential design of experiment for sparse polynomial chaos expansions. SIAM/ASA J. Uncert. Quantif. 5(1), 1061–1085 (2017). https://doi.org/10.1137/16m1103488

    Article  Google Scholar 

  41. Frazier, P., Powell, W., Dayanik, S.: The knowledge-gradient policy for correlated normal beliefs. Informs J. Comput. 21(4), 599–613 (2009). https://doi.org/10.1287/ijoc.1080.0314

    Article  Google Scholar 

  42. Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential information collection. SIAM J. Control Optim. 47(5), 2410–2439 (2008). https://doi.org/10.1137/070693424

    Article  Google Scholar 

  43. Fu, Y., Ding, J., Wang, H., Wang, J.: Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in industry 4.0-based manufacturing system. Appl. Soft Comput. 68, 847–855 (2018)

    Article  Google Scholar 

  44. Geir, N., Johnsen, L.M., Aanonsen, S.I., Vefring, E.H., et al.: Reservoir monitoring and continuous model updating using ensemble Kalman filter (2003)

  45. Geweke, J., et al.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, vol. 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN, USA (1991)

  46. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer (1991)

  47. Gu, Y., Oliver, D.S.: History matching of the punq-s3 reservoir model using the ensemble kalman filter. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/89942-ms (2004)

  48. Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications (1970)

  49. Heidari, L., Gervais, V., Ravalec, M.L., Wackernagel, H.: History matching of petroleum reservoir models by the ensemble Kalman filter and parameterization methods. Comput. Geosci. 55, 84–95 (2013). https://doi.org/10.1016/j.cageo.2012.06.006

    Article  Google Scholar 

  50. Hirasaki, G.J., Miller, C.A., Puerto, M.: Recent advances in surfactant eor. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/115386-ms (2008)

  51. Hu, L.: Gradual deformation and iterative calibration of gaussian-related stochastic models. Math, Geol., 87—-108 (2000)

  52. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Global Optim. 34(3), 441–466 (2006)

    Article  Google Scholar 

  53. Jahangiri, H.R., Zhang, D., et al.: Optimization of the net present value of carbon dioxide sequestration and enhanced oil recovery. In: Offshore Technology Conference. Offshore Technology Conference (2011)

  54. Johnson, R.L., Greenstreet, C.W.: Managing uncertainty related to hydraulic fracturing modeling in complex stress environments with pressure-dependent leakoff. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/84492-ms (2003)

  55. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  Google Scholar 

  56. Kamal, M.S., Hussein, I.A., Sultan, A.S.: Review on surfactant flooding: Phase behavior, retention, ift, and field applications. Energy Fuels 31(8), 7701–7720 (2017). https://doi.org/10.1021/acs.energyfuels.7b00353

    Article  Google Scholar 

  57. Khaninezhad, M.M., Jafarpour, B.: Sparse randomized maximum likelihood (sprml) for subsurface flow model calibration and uncertainty quantification. Adv. Water Resour. 69, 23–37 (2014)

    Article  Google Scholar 

  58. Lake, L.W.: Fundamentals of enhanced oil recovery. Society of Petroleum Engineers (2014)

  59. Le Van, S., Chon, B.H.: Chemical flooding in heavy-oil reservoirs: From technical investigation to optimization using response surface methodology. Energies 9(9), 711 (2016)

  60. Leray, S., Douarche, F., Tabary, R., Peysson, Y., Moreau, P., Preux, C.: Multi-objective assisted inversion of chemical eor corefloods for improving the predictive capacity of numerical models. J. Pet. Sci. Eng. 146, 1101–1115 (2016)

    Article  Google Scholar 

  61. Li, G., Reynolds, A.C.: Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm. Comput. Geosci. 15(3), 451–462 (2011)

    Article  Google Scholar 

  62. Li, Q., Xing, H., Liu, J., Liu, X.: A review on hydraulic fracturing of unconventional reservoir. Petroleum 1(1), 8–15 (2015). https://doi.org/10.1016/j.petlm.2015.03.008

    Article  Google Scholar 

  63. Luo, X., Stordal, A.S., Lorentzen, R.J., Nævdal, G.: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications. SPE J. 20(05), 962–982 (2015). https://doi.org/10.2118/176023-PA

    Article  Google Scholar 

  64. Pope, M., Delshad G.K.S.: Utchem version 9.82 technical documentation. Center for Petroleum and Geosystems Engineering (2000)

  65. Ma, X., Al-Harbi, M., Datta-Gupta, A., Efendiev, Y.: An efficient two-stage sampling method for uncertainty quantification in history matching geological models. SPE J. 13(01), 77–87 (2008). https://doi.org/10.2118/102476-pa

    Article  Google Scholar 

  66. Ma, X., Datta-Gupta, A., Efendiev, Y.: A multistage mcmc method with nonparametric error model for efficient uncertainty quantification in history matching. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/115911-ms (2008)

  67. Marelli, S., Sudret, B.: UQLab user manual – polynomial chaos expansions. Report UQLab-V1.0-104, http://www.uqlab.com/download (2017)

  68. Maschio, C., Schiozer, D.J.: Bayesian history matching using artificial neural network and Markov chain Monte Carlo. J. Pet. Sci. Eng. 123, 62–71 (2014). https://doi.org/10.1016/j.petrol.2014.05.016

    Article  Google Scholar 

  69. Maschio, C., Schiozer, D.J.: A new methodology for Bayesian history matching using parallel interacting Markov chain monte carlo. Inverse Problems Sci. Eng. 26(4), 498–529 (2017). https://doi.org/10.1080/17415977.2017.1322078

    Article  Google Scholar 

  70. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    Google Scholar 

  71. Mohamed, L., Calderhead, B., Filippone, M., Christie, M., Girolami, M.: Population mcmc methods for history matching and uncertainty quantification. Comput. Geosci. 16(2), 423–436 (2011). https://doi.org/10.1007/s10596-011-9232-8

    Article  Google Scholar 

  72. Mondal, A., Mallick, B., Efendiev, Y., Datta-Gupta, A.: Bayesian uncertainty quantification for subsurface inversion using a multiscale hierarchical model. Technometrics 56(3), 381–392 (2014)

    Article  Google Scholar 

  73. Naik, P., Aramideh, S., Ardekani, A.M.: History matching of surfactant-polymer flooding using polynomial chaos expansion. Journal of Petroleum Science and Engineering (2018)

  74. Oliver, D.S., Cunha, L.B., Reynolds, A.C.: Markov chain monte carlo methods for conditioning a permeability field to pressure data. Math. Geol. 29(1), 61–91 (1997)

    Article  Google Scholar 

  75. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008)

  76. Pandita, P., Bilionis, I., Panchal, J., Gautham, B., Joshi, A., Zagade, P.: Stochastic multiobjective optimization on a budget: Application to multipass wire drawing with quantified uncertainties. Int. J. Uncertain. Quantif., 8(3) (2018)

  77. Patil, A., Huard, D., Fonnesbeck, C.J.: Pymc: Bayesian stochastic modelling in python. J. Statist. Softw. 35(4), 1 (2010)

    Article  Google Scholar 

  78. Paul, B.K., Moulik, S.P.: The viscosity behaviors of micro emulsions: An overview (2000)

  79. Pope, G., Wang, B., Tsaur, K.: A sensitivity study of micellar/polymer flooding. Soc. Pet. Eng. J. 19 (06), 357–368 (1979). https://doi.org/10.2118/7079-pa

    Article  Google Scholar 

  80. Pyrcz, M.J., White, C.D.: Uncertainty in reservoir modeling. Interpretation, 3(2). https://doi.org/10.1190/int-2014-0126.1 (2015)

  81. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006). Tableofcontentsonly http://www.loc.gov/catdir/toc/fy0614/2005053433.html

    Google Scholar 

  82. Riazi, S.H., Zargar, G., Baharimoghadam, M., Moslemi, B., Darani, E.S.: Fractured reservoir history matching improved based on artificial intelligent. Petroleum 2(4), 344–360 (2016)

    Article  Google Scholar 

  83. Roggero, F., Hu, L.: Gradual deformation of continuous geostatistical models for history matching. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/49004-ms (1998)

  84. Schulze-Makuch, D.: Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43 (3), 443–456 (2005). https://doi.org/10.1111/j.1745-6584.2005.0051.x

    Article  Google Scholar 

  85. Shah, D.O., Schechter, R.S.: Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press (1977)

  86. Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Gulf Professional Publishing (2010)

  87. Sheng, J.J.: Surfactant-polymer flooding. Modern Chemical Enhanced Oil Recovery, 371–387. https://doi.org/10.1016/b978-1-85617-745-0.00009-7 (2011)

  88. Sheng, J.J.: Status of surfactant eor technology. Petroleum 1(2), 97–105 (2015). https://doi.org/10.1016/j.petlm.2015.07.003

    Article  Google Scholar 

  89. Solairaj, S., Britton, C., Kim, D.H., Weerasooriya, U., Pope, G.A.: Measurement and analysis of surfactant retention. SPE Improved Oil Recovery Symposium. https://doi.org/10.2118/154247-ms (2012)

  90. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

    Article  Google Scholar 

  91. Suniga, P.T., Fortenberry, R., Delshad, M.: Observations of microemulsion viscosity for surfactant EOR processes. SPE Improved Oil Recovery Conference. https://doi.org/10.2118/179669-ms (2016)

  92. Supee, A., Idris, A.K.: Effects of surfactant-polymer formulation and salinities variation towards oil recovery. Arab. J. Sci. Eng. 39(5), 4251–4260 (2014). https://doi.org/10.1007/s13369-014-1025-7

    Article  Google Scholar 

  93. Tagavifar, M., Herath, S., Weerasooriya, U.P., Sepehrnoori, K., Pope, G.: Measurement of microemulsion viscosity and its implications for chemical eor. SPE Improved Oil Recovery Conference. https://doi.org/10.2118/179672-ms (2016)

  94. Tavakoli, R., Reynolds, A.C.: Monte carlo simulation of permeability fields and reservoir performance predictions with svd parameterization in rml compared with enkf. Comput. Geosci. 15(1), 99–116 (2010). https://doi.org/10.1007/s10596-010-9200-8

    Article  Google Scholar 

  95. Tsay, R.S.: Analysis of Financial Time Series, vol. 543. Wiley (2005)

  96. Walker, D., Britton, C., Kim, D.H., Dufour, S., Weerasooriya, U., Pope, G.A.: The impact of microemulsion viscosity on oil recovery. SPE Improved Oil Recovery Symposium. https://doi.org/10.2118/154275-ms(2012)

  97. Wantawin, M., Yu, W., Sepehrnoori, K.: An iterative work flow for history matching by use of design of experiment, response-surface methodology, and Markov chain Monte Carlo algorithm applied to tight oil reservoirs. SPE Reserv. Eval. Eng. 20(03), 613–626 (2017). https://doi.org/10.2118/185181-pa

    Article  Google Scholar 

  98. Weiss, W., Baldwin, R.: Planning and implementing a large-scale polymer flood. J. Petrol. Tech. 37(04), 720–730 (1985). https://doi.org/10.2118/12637-pa

    Article  Google Scholar 

  99. Xiu, D., Karniadakis, G.E.: The wiener-askey polynomial chaos for stochastic differential equations. https://doi.org/10.21236/ada460654 (2003)

  100. Xu, T., Gómez-Hernández, J.J., Zhou, H., Li, L.: The power of transient piezometric head data in inverse modeling: An application of the localized normal-score enkf with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Adv. Water Resour. 54, 100–118 (2013)

    Article  Google Scholar 

  101. Yustres, Á., Asensio, L., Alonso, J., Navarro, V.: A review of Markov chain Monte Carlo and information theory tools for inverse problems in subsurface flow. Comput. Geosci. 16(1), 1–20 (2012)

    Article  Google Scholar 

  102. Zeng, L., Zhang, D.: A stochastic collocation based Kalman filter for data assimilation. Comput. Geosci. 14(4), 721–744 (2010)

    Article  Google Scholar 

  103. Zhang, D., Lu, Z., Chen, Y., et al.: Dynamic reservoir data assimilation with an efficient, dimension-reduced Kalman filter. Spe J. 12(01), 108–117 (2007)

    Article  Google Scholar 

  104. Zhang, F., Skjervheim, J.A., Reynolds, A., Oliver, D.: Automatic history matching in a Bayesian framework, example applications. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/84461-ms (2003)

  105. Zhang, J., Delshad, M., Sepehrnoori, K., Pope, G.A.: An efficient reservoir-simulation approach to design and optimize improved oil-recovery-processes with distributed computing. SPE Latin American and Caribbean Petroleum Engineering Conference. https://doi.org/10.2118/94733-ms (2005)

  106. Zheng, Z.: History matching and optimization using stochastic methods: Applications to chemical flooding. PhD Thesis. http://hdl.handle.net/1969.1/153874 (2014)

  107. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bryan Clayton for his support and useful discussion.

Funding

This research is partially supported by a grant from the Pioneer Oil Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo M. Ardekani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: : Posterior distribution

Appendix: : Posterior distribution

Figure 11 shows the prior and posterior distribution of all the model parameters.

Fig. 11
figure 11

Prior and posterior distributions of all the uncertain model parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, P., Pandita, P., Aramideh, S. et al. Bayesian model calibration and optimization of surfactant-polymer flooding. Comput Geosci 23, 981–996 (2019). https://doi.org/10.1007/s10596-019-09858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09858-z

Keywords

Navigation